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Abstract

The aim of this dissertation is to investigate the processing of sensory signals in the mammalian olfactory
bulb, using analysis and computer simulation of mathematical models. A biologically-detailed mathemat-
ical model provides a framework which integrates the results of experiments at different levels of enquiry,
and enables study of problems which cannot easily be addressed using only the methods of experimental
neuroscience.

Specific biological and computational problems which are addressed include: the existence, origin and
role of oscillations/synchronization; how the properties of individual cells/synapses influence the network
behaviour; the role of lateral inhibition; how the connectivity between cells influences network behaviour.

The dissertation has four main parts: (i) a review of the anatomy and physiology of vertebrate
olfactory systems, and of previous modelling studies of the olfactory bulb; (ii) development of biophysical
models of the principal neurone types of the olfactory bulb, based closely on experimental data, but
simple enough to allow simulation of large networks; (iii) an examination of the fundamental interaction
in the bulb – that between two mitral cells – using simulation of the biophysical cell models and analysis
of the simpler integrate-and-fire neurone model; (iv) development of network models of the olfactory
bulb incorporating the biophysical neurone models. These are tested using experimental data from the
literature, and then the properties of the network are studied, leading to predictions which could be
tested experimentally.
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Chapter 1

Introduction

How does the brain interpret the outside world? More specifically, what signals does the world induce
in sensory cells and how are these signals processed by the deeper layers of the brain? The mechanisms
by which light, sound, pressure, force and environmental chemicals are transduced into electrical signals
in the retina, cochlea, skin, tongue and nasal epithelium are now fairly well understood. What happens
to these signals next, and to the information which they carry, is much less well understood, despite
continuing and accelerating progress.

The root problem is the vast complexity of the central nervous system. Each of the billions of cells
receives many hundreds of inputs and has many hundreds of output connections. Progress depends on
identifying modules, sub-regions of the brain, within which the pattern of connections is more or less
stereotyped. The main olfactory bulb (OB) is one such module, with many advantages as a system for
studying neural information processing. The advantages are:

• The bulb receives direct sensory input – the olfactory receptor neurones synapse directly with
neurones in the bulb. This means that the input to the bulb can be well characterised and is in
contrast to other much-studied areas such as the hippocampus and visual cortex.

• The bulb has a very well defined laminar structure, is divided into functionally and anatomically
distinct modules (the glomeruli and associated cells) and is mainly a feed-forward network with
lateral interactions but few recurrent connections. There are only four principal neurone types. In
summary, the bulb has a simple and well-defined structure.

• The olfactory stimulus is simpler than visual or auditory stimuli. Firstly, the dynamics of odour
signals are generally slower. Secondly, a natural olfactory ‘scene’ contains usually only one or two
‘objects’, with two main properties–identity and intensity. A natural visual scene, by contrast,
will usually contain several objects, each with several properties: size, shape, brightness, colour,
texture, velocity and position in space. This suggests that the information carried by the olfactory
signal is less.

• the bulb exhibits phenomena – field potential oscillations [1], spike synchronization [67], synaptic
plasticity related to behavioural changes [17, 69] – which are of considerable interest in understand-
ing neural coding in many brain regions.

An understanding of information processing in the olfactory bulb will require integration of data from
numerous levels (sub-cellular, single neurone, local circuit, system) and modalities (molecular biology,
neurophysiology, imaging, psychology) of investigation. Mathematical/computational modelling is a pow-
erful and necessary tool for integration of these disparate strands of data. According to Bower (quoted
in [115]), ‘models based on the real anatomy and physiology of the nervous system . . . constitute . . . a
compact and self-correcting database of neurobiological facts and functional relationships’.

In this chapter I first summarize the anatomy and neurochemistry of olfactory systems, concentrating
on mammalian systems. I then discuss the ‘olfactory code’ and highlight current unsolved problems in
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2 CHAPTER 1. INTRODUCTION

our understanding of this. A review of computational modelling studies in the olfactory bulb leads to
a proposal for a strategy for modelling the olfactory bulb which can shed light on some of the current
problems, act as a framework for the integration of experimental findings and make experimentally-
testable predictions. Finally, I list the specific aims of the research presented in this dissertation.

1.1 Olfactory anatomy and physiology

1.1.1 Anatomy of mammalian olfactory systems

The principal neurone types of the olfactory epithelium and olfactory bulb, and their connections, are
shown in Figure 1.1.

1.1.1.1 Olfactory epithelium

The olfactory receptor neurones (ORNs) lie in a single-cell-thickness layer – the olfactory epithelium –
in the inner, upper regions of the nasal passages. There are about 107 ORNs in the olfactory epithelium
of rats [91]. The epithelium is covered by a mucus layer through which air-borne molecules diffuse until
they reach the ORN cell membrane. ORNs are small bipolar neurones, with a single dendrite extending
to the epithelium surface, from which several cilia project into the mucus layer. Odorant molecules bind
to G-protein coupled receptors on the cilia surfaces. This leads to depolarisation of the neurone and
action potential generation via a complex series of transduction events (see [18] for a detailed review).
The temporal structure of the ORN response can be complex [39], but in general the frequency of action
potential firing is an increasing function of odour concentration.

1.1.1.2 Bulb size and lamination

The axons of ORNs bunch to form the olfactory nerve (ON), which passes through a thin part of the
skull – the cribriform plate – then innervates the main olfactory bulb. The olfactory bulb is shaped as
its name suggests, and has a volume of about 9 mm3 in mouse [111, 121], 20-30 mm3 in rat [57, 121] and
90 mm3 in rabbit [121] (all figures are for adult animals). In common with most cortical regions it has
a laminar structure. From outside in, the layers are the glomerular layer, the external plexiform layer
(EPL), the mitral cell layer, the internal plexiform layer and the granule cell layer. The innermost part of
the bulb, the olfactory tract, consists of mitral and tufted cell axons projecting to other olfactory areas.

1.1.1.3 Glomeruli

The ORN axons form synapses in the outermost layer of the bulb, the glomerular layer. This consists
of several thousand well-defined neuropil (approximately 1800, 4200 and 6300 in mouse, rat and rabbit
respectively [121]), called glomeruli, each comprising the axon terminals of ORNs, and the dendrites of
mitral, tufted and periglomerular (PG) cells. Each ORN axon branches within a single glomerulus, with
on average 27 terminals [71]. ORNs make excitatory, glutamatergic synapses onto PG, mitral and tufted
cells. Mitral/tufted cells have both NMDA- and non-NMDA glutamate receptors. PG cell dendrites
receive glutamatergic synapses from and make GABAergic synapses onto mitral/tufted cell dendrites
within the glomeruli. The presence of GABA suggests that the action of PG cells on mitral/tufted
cells is inhibitory, although there is some evidence that it is excitatory [89]. The PG cell population
is functionally [117] and chemically [9, 50, 72] heterogeneous. Olfactory nerve axon terminals contain
GABAB receptors [16] which inhibit transmission from the ON to mitral cells [102], although ON axons
do not receive chemical synapses [135].

1.1.1.4 Periglomerular cells

The periglomerular cells are small neurones (soma diameter 8–9 mm in hamster [86]) whose somata
surround the glomeruli. They send dendrites into one or more nearby glomeruli, and axons to more
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Figure 1.1: The principal neurones of the olfactory epithelium and olfactory bulb, their connections and their
locations. Abbreviations: OE, olfactory epithelium; ONL, olfactory nerve layer; GL, glomerular layer; EPL,
external plexiform layer; MCL, mitral cell layer; IPL, internal plexiform layer; GCL, granule cell layer.
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distant glomeruli. There are about 106 PG cells in the rodent olfactory bulb [135], or about 500 per
glomerulus.

1.1.1.5 Mitral and tufted cells

Mitral and tufted cells are the output neurones of the olfactory bulb – they are the only ones to send
axons outside the bulb, to the cortex. Mitral and tufted cells both have a single primary dendrite which
branches copiously within a single glomerulus, and several long (average length 1.2 mm in rabbits [94]),
secondary (basal) dendrites which project radially from the soma, approximately parallel to the bulb
laminae. Mitral and tufted cells are distinguished by their size, location and projection patterns. Mitral
cells are larger and have their somata within a narrow band only a few cells wide – the mitral cell layer.
Tufted cells are smaller (the total length of the secondary dendrites is 4000-5000 µm for middle tufted
cells in rat and rabbit, compared to 15000-17000 µm for mitral cells [94, 106]) and have cell bodies
distributed throughout the external plexiform layer. The differences in axonal projections and collaterals
are discussed below. Both mitral and tufted cells have been divided into sub-classes, based on size, on
the position of the soma and on the distribution of dendrites [86, 94, 106]. The number of mitral cells
is in the region 40–60,000 in rodents [57, 107, 121] and in humans [13]. Tufted cells are 2–3 times as
numerous [133].

1.1.1.6 Granule cells

The most numerous cell type in the olfactory bulb is the granule cell (around 5 × 106 per bulb [135]).
These are small-bodied cells (soma diameter 6-8 µm [135]) with somata in the broad granule cell layer and
dendrites extending outwards into the EPL, where they form reciprocal, dendrodendritic synapses with
the secondary/basal dendrites of mitral and tufted cells. At these synapses mitral/tufted cells release
glutamate and granule cells release GABA; granule cells have both NMDA and non-NMDA glutamate
receptors; mitral/tufted cells have GABAA receptors. Mitral/tufted cells also possess autoreceptors,
although these may be extra-synaptic: NMDA [109], AMPA [108] and the mGluR1 metabotropic gluta-
mate receptor [145]. It has been demonstrated that granule cells receive GABAergic synaptic input [152].
However, the identity of the presynaptic cells is not known. There is morphological evidence for gap junc-
tions between granule cells in clusters [120]. The granule cell response to synaptic excitation is somewhat
unusual, in that activation of the fast, AMPA receptors only is insufficient to produce action potentials
in the neurone [63, 125], due to the presence of an A-type potassium current in the granule cell [126];
co-activation of both NMDA and AMPA receptors is required.

1.1.1.7 Short-axon cells

Short-axon neurones form a very small population, scattered in the granule cell layer. Little is known
about their function (see reference [133]).

1.1.1.8 Projections to cortex and axon collaterals

Mitral and tufted cell axons group to form the lateral and medial olfactory tracts. These project to a
number of cortical regions: the anterior olfactory nucleus, the olfactory tubercle, the piriform cortex, the
cortical nucleus of the amygdala and the entorhinal area [36]. Tufted cell projections are more limited in
extent, innervating only the anterior portion of the piriform cortex with no connections to the entorhinal
cortex. The anatomy and function of the olfactory cortex are outside the scope of this dissertation, but
two points are worth noting: firstly, the synapses onto the pyramidal neurones of piriform cortex (often
regarded as the main olfactory cortical region [155]) are excitatory; secondly, extracellular recordings in
piriform cortex show prominent 30-100 Hz oscillations. These are relevant in considering how the olfactory
epithelium and bulb encode olfactory information, since it is the piriform cortex which first makes use of
the signal from the bulb. Both mitral and tufted cell axons give off collaterals. The collaterals of tufted
cells are distributed in the internal plexiform layer and superficially in the granule cell layer; those of
mitral cells are distributed throughout the granule cell layer [70].
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1.1.1.9 Centrifugal inputs

Central or centrifugal inputs come from several brain regions. Cholinergic fibres originating in the basal
forebrain have a number of targets in the OB. These axons form synapses with periglomerular and granule
cells. Acetylcholine (ACh) increases the firing of periglomerular and of mitral cells through nicotinic
receptor activation. Through muscarinic receptors, ACh inhibits granule cell firing when acting on the
granule cell soma, and increases GABA release when acting on granule cell peripheral dendrites [23].
Noradrenergic inputs originating in the locus coerulus terminate mainly in the internal plexiform and
granule cell layers [28]. Reports of the effects of noradrenergic activation are somewhat contradictory:
reported effects include a depression-potentiation sequence in dendrodendritic inhibition, mediated by
β-adrenergic receptors [105], and an increase in sensitivity of mitral cells to weak ON input mediated by
α-1-adrenergic receptors [28]. There are also axon collaterals from olfactory cortex pyramidal neurones
which terminate mainly in the granule cell layer, and inputs from the anterior olfactory nucleus [135].

1.1.1.10 Accessory olfactory bulb

Embedded in the side of the main olfactory bulb is the accessory olfactory bulb (AOB). This is a structure
with cell types and organisation very similar to those of the main bulb, but which is much smaller in
size, receives input from the vomeronasal organ rather than the olfactory epithelium, and is concerned
with pheromones, rather than with general odours. Because of this it probably has much more finely
tuned receptors than the main olfactory system, and it is interesting that the AOB has nevertheless such
a similar structure to the main OB. Any model of the main bulb is likely to have some relevance also to
understanding of the AOB.

1.1.2 Non-mammalian olfactory systems

There is a very considerable degree of similarity in olfactory systems across vertebrates [40]. All classes
of vertebrates possess mitral, tufted and granule cells in their olfactory bulbs. However, the mitral cells
of most non-mammals do not have basal dendrites and they may have multiple primary dendrites [38].
Fish do not have periglomerular cells [38]. It is possible that periglomerular cells and basal dendrites
were present in early vertebrate ancestors and have been lost in certain branches of vertebrate evolution.
However, the most likely explanation is that these structures are later refinements. This suggests that
the fundamental tasks of vertebrate olfaction do not require either intra/inter-glomerular inhibition or
long-range lateral inhibition and that these features improve upon the basic apparatus.

The organisations of insect and vertebrate olfactory systems are similar [140]. Olfactory receptor
neurones on insect antennae project to the antennal lobe (AL), which is an analogue of the vertebrate
OB. In the AL the ORN axons and the dendrites of the projection neurones form glomeruli as in the
OB. One type of local interneurones, comparable to PG cells, receives input from ORNs and sends
output to projection neurones. Another, anaxonal, local interneurone type is comparable to the granule
cell in its connections. Despite this remarkable similarity, it is probable that vertebrate and insect
olfactory systems have arisen independently [140]. For example, the recently discovered olfactory receptor
family in the fruitfly Drosophila Melanogaster shows no significant homology to the olfactory receptors of
vertebrates [29, 148]. This suggests that the similarity in organisation may have arisen through convergent
evolution, with independent evolutionary sequences converging on the same, or similar, algorithms.

In general, this similarity between the olfactory systems of very different organisms suggests that
experimental results from non-mammalian species may, with caution, be used to guide investigation and
modelling of the mammalian olfactory bulb.

1.1.3 Responses of the olfactory bulb to electrical and odour stimulation

1.1.3.1 Electrical stimulation

In intact olfactory bulb preparations, sub-threshold electrical stimulation of the olfactory nerve produces a
small, brief depolarisation of the mitral/tufted cell membrane followed by an extended hyperpolarisation.
Supra-threshold stimulation produces a single action potential followed by an extended hyperpolarisation.
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This is seen in isolated turtle OB [97], in salamander OB in vivo [51] and in rat OB in vivo [42].
Sometimes there is a short inhibitory-excitatory sequence between the initial excitation and the extended
inhibition [42, 97].

In non-intact preparations, such as the hemisected turtle OB or rat OB slice, in which fewer of the
secondary dendrites are preserved intact, a prolonged excitation with a number of action potentials is
seen [10, 103]. This is also seen in the intact turtle bulb in the presence of the GABAA antagonist
bicuculline [104].

Output cell responsiveness to ON stimulation decreases with depth in the bulb (type I mitral cells are
least responsive; superficial tufted cells most responsive). This is most likely due to connectivity (deeper
layers have longer dendrites and so receive more inhibitory synapses) rather than to intrinsic differences
in cell properties [42].

Current-source-density analysis in rat OB slices indicates that ON activation produces prolonged
activation in the primary dendrites of mitral/tufted cells and relatively brief excitation in the granule cell
peripheral dendrites [5].

1.1.3.2 Odour stimulation

On a coarse time scale, the response of mitral/tufted cells to odour stimulation is an increase, a decrease,
or no change in firing rate. ‘Rebound’ increases in firing rate when the stimulus is removed are also
sometimes seen [99]. Nearby cells are more likely to have similar firing patterns than are widely separated
cells [12, 20].

On a finer time scale, firing rates can vary within the period of odour stimulation. Response patterns
change considerably with stimulus concentration, but in a graded manner (given the responses to three
consecutive odour concentrations, the response to the intermediate concentration is intermediate between
the other two responses) [53]. Near-threshold concentrations induce simple phasic increases or decreases
in firing rate. At higher concentrations the temporal patterns of the responses become more complex,
comprising alternating periods of increased and decreased firing rates [52, 53]. The same patterns of
excitation and suppression are seen in membrane depolarisation and hyperpolarisation in intracellular
recordings [52].

Responses of individual neurones are variable over time (on the scale of hours and days), although
the variability of a single neuron over time is less than the variability between different neurones. These
changes are not odour-specific, but seem to be determined by central control [12].

1.1.3.3 Spatial distribution of activity

The degree of activation by odour stimuli of glomeruli, and the distribution of activated glomeruli, have
been studied by c-fos mRNA expression [48], by functional MRI [157] and by optical imaging of calcium-
sensitive dyes [44], voltage-sensitive dyes [45], and intrinsic signals [122]. All these studies reveal that
most odorants activate multiple glomeruli, and that the patterns of activated glomeruli are distinct but
overlapping for different odorants, i.e. an individual glomerulus may be activated by many odorants,
but the pattern across the bulb is specific to a single odorant. Studies using stimulation with a series of
homologous aldehydes and with amino acids have revealed that glomeruli are tuned to detect molecular
features and that the response patterns to similar molecules are correlated [44, 122].

1.1.3.4 Oscillations and synchronization

Odorant-induced oscillations in local field-potential (LFP) recordings in the olfactory bulb were first
reported in hedgehog by Adrian [1], and have since been reported in the OBs of many vertebrate species,
in the antennal lobes of insects and in the olfactory processing areas of other invertebrates.

These oscillations are thought to reflect rhythmical, synchronous firing of populations of neurones [37].
Indeed, it has been shown in locusts [77, 151] and in rabbits [67] that the spiking of individual neurones
is phase-locked to the LFP, and that spiking in simultaneously recorded pairs of neurones is closely
synchronized. Different sub-populations of neurones may be synchronized with the global oscillation
at different periods during the response [77, 151], and oscillations with different (although sometimes
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harmonically-related) frequencies may be elicited in different regions of the bulb [74]. In honeybees,
oscillatory synchronization has been shown to have functional relevance: chemically-induced desynchro-
nization impairs the ability to discriminate between similar odorants but has no effect on discrimination
of dissimilar odorants [138].

It is generally thought that the oscillations are purely a network phenomenon, generated by alternate
excitation and inhibition at the dendrodendritic mitral–granule cell synapse [135], but the finding of
intrinsic sub-threshold oscillations in the membrane potential of rat mitral cells, with a frequency range
similar to that of the LFP oscillations, suggests a role for intrinsic cell properties in the generation of
synchrony [33].

1.1.4 The olfactory code

The basis of the olfactory code is the family of 7-transmembrane-domain G-protein-coupled proteins
which are the olfactory receptors (ORs) [18, 19]. Information about the intensity and identity of an
odour stimulus is encoded in the pattern of activation of OR types. At the simplest level this means
which receptor types are activated and how much, but it is possible that temporal factors, due to the
different rates and durations of binding of different molecules, may form part of the encoding. The degree
of receptor activation is transduced into action potential firing. It is probable that the average rate of
firing carries most of the information, since the firing rates of ORNs are much faster than the rate of any
modulation of the stimulus.

Any given ORN expresses only a single receptor type [88], and all ORNs expressing the same receptor
project to only one or two defined glomeruli [93, 149]. It is hypothesized that any given glomerulus
receives inputs from only one ORN type (the one glomerulus–one receptor hypothesis [95]) and it has
been demonstrated for particular glomeruli that all axons innervating those glomeruli are from a single
ORN type [8]; however, a study in transgenic mice has found glomeruli that are innervated by two ORN
types [144]. Each mitral or tufted cell has a single primary dendrite which forms synapses in a single
glomerulus (note this is not true in amphibians, which tend to have two primary dendrites). Therefore,
assuming the one glomerulus–one receptor hypothesis is approximately correct, the pattern of activation
of ORs is represented directly by the pattern of input to mitral/tufted cells at the glomeruli.1 So it
seems that all the brain would need to do to determine which odour is present is to determine how much
input each glomerulus is receiving. In that case, why have an olfactory bulb? Why don’t ORN axons go
directly to the cortex?

An olfactory system must enable an animal to perform several tasks: detection and identification
of odours, segmentation of a mixture of odours, discrimination between similar odours, association of
previously encountered odours with other sensory memories, tracking of space- and time-varying odour
plumes. The relative importance of these tasks depends on the animal’s needs. All olfactory systems have
a hierarchical structure, and each task is split into sub-tasks, each of which is assigned to a different level
of the hierarchy: for example, olfactory receptor cells transduce the chemical signal into an electrical one,
this signal is passed to the olfactory bulb or antennal lobe, where it is processed in a number of ways to
facilitate the tasks of the subsequent cortical stages, recognition, association, multi-modality integration,
etc. The task of the olfactory receptors is conceptually simple, even if less than well understood in many
details. The tasks of the cortex are also readily understood as concepts, although the mechanisms by
which they are accomplished remain almost opaque. In contrast, the very tasks which the olfactory
bulb/antennal lobe must perform are not understood, let alone the mechanisms involved.

Various hypotheses have been advanced for the function of the olfactory bulb/antennal lobe. One
is that it narrows the ‘molecular receptive range’ – i.e. a mitral cell responds to a narrower range of
odorants than does the receptor cell population that projects to it – thus reducing the overlap between
the representations of similar odorants [81, 95, 96]. The mechanism for this narrowing is the lateral
inhibition between mitral cells, mediated via granule and PG cells. There is experimental support for
this hypothesis: Yokoi et al [158] measured the firing rate response of mitral cells to a series of straight-

1a caveat – there is some evidence for interactions within the epithelium or olfactory nerve, supported by, for example,
gaseous messengers or ephaptic interactions [37]. This would tend to produce interference between the signals from different
receptor types.
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Figure 1.2: A schematic representation of the results of Yokoi et al [158]. Each bar graph shows the change in firing
rate relative to baseline for a single cell in response to stimulation with a straight-chain aldehyde with between
3 and 11 carbon atoms in the chain. (A) Normal response showing inhibitory responses to certain aldehydes,
leading to narrowing of the molecular receptive range (MRR). (B) Response with glutamate or GABAA antagonists
showing abolition of inhibition and broadening of the MRR.

chain aliphatic aldehydes, differing only in the number of carbon atoms in the chain. They found that
a given mitral cell is maximally excited by one aldehyde, and is also excited by the aldehydes with one
more and one fewer carbon atom. Aldehydes with two more or two fewer carbon atoms often produce
inhibition, while all other members of the series produce no response. When lateral inhibition was
abolished or reduced by application of the glutamate-receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-
dione (CNQX) or the GABAA receptor antagonist bicuculline, those aldehydes which had produced
inhibition now produced excitation or no response (see Figure 1.2 for a summary of these results).
In modelling studies, Linster and colleagues also found that lateral inhibition reduces overlap in the
representation of different odours [81, 82] (these studies are discussed in more detail in §1.2).

A second hypothesis for the role of the bulb, which is consistent with the one discussed above, is that
the bulb circuitry introduces temporal correlations, such as spike synchronization, between the signals
from different receptors responding to the same odour, thereby ‘binding’ those components of the signal
together, representing a single object to the cortex [75]. The cortex could recognize such an object using
neurones that function as coincidence detectors, for example. This hypothesis is based on the theoretical
presumption that some sort of binding mechanism is necessary (see [136] for a review of binding in
the visual system), and on the experimental evidence for spike synchronization in mammalian olfactory
bulb and insect antennal lobe discussed in §1.1.3 above. Further support comes from the finding that
desynchronization of signals in the locust antennal lobe degrades the specificity of odour responses in
neurones which receive the signals from the antennal lobe [85].

A third possibility is that the bulb separates out information about the intensity of an odour stimulus
from information about its identity. Psychophysically, a known odour is recognized over a very wide
range of stimulus concentration, but the pattern of activation of glomeruli [122] and the temporal firing
rate response of mitral/tufted cells [53] both change greatly. Modelling studies have suggested that odour
intensity could be encoded by the number of mitral/tufted cells firing [3].

Other modelling studies have suggested that the bulb functions as an associative memory [55, 56, 60],
such that an input causes the bulb activity to converge to one of a number of previously stored patterns
or ‘memories’. These models are evaluated in §1.2.1.

Finally, the bulb may produce a mapping between a physical/chemical odour space and a ‘behaviorally-
important’ odour space. In other words, two odours which are chemically very different may have exactly
the same behavioural significance to an animal, whereas it may be very important for an animal to
discriminate between two extremely similar odours, such as the odour of a ewe’s own lamb from that
of another lamb [68, 69]. It is likely that evolution, in assembling the repertoire of olfactory receptor
molecules, has allowed for this necessity by producing many receptor types to cover an ‘interesting’ re-
gion of odour space while having few receptors to cover an ‘uninteresting’ region. However, the bulb
may take this further (Figure 1.3). Where it is important for an animal to discriminate between two
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Figure 1.3: A representation of the hypothesized mapping of ‘physical/chemical’ odour space (top) onto a
‘behaviourally-important’ odour space (bottom). Where it is important for an animal to discriminate between two
very similar odours, the differences between the spatio-temporal patterns of receptor activation may be amplified
by the bulb. The differences between the representations of odours which have little or no behavioural significance
would be correspondingly reduced.

very similar odours, the differences between the spatio-temporal patterns of receptor activation may be
amplified by the bulb. The differences between the representations of odours which have little or no be-
havioural significance would be correspondingly reduced. This hypothesis was inspired by consideration
of the heterogeneity of bulb circuitry, and by experimental findings on olfactory learning. The bulb is
not homogeneous in its connectivity or synaptic weights, and the heterogeneity is unlikely to be entirely
random. Therefore, some inputs will have a larger influence on bulb output than others. Recordings of
mitral cell activity in the olfactory bulb of sheep before and after giving birth showed that before, the
majority of cells responded preferentially to food odours, and after, the majority responded preferentially
to lamb odours, with about one third of these responding differently to own-lamb than to other-lamb
odours [69]. Accompanying this were increases in neurotransmitter release in the bulb. The odorants
and the receptors are the same before and after, so it is apparent that synaptic changes in the bulb have
increased the representation of lamb odours in output space, possibly at the expense of the extent of
output space representing food odours. This hypothesis is consistent with the first three discussed above
(narrowing receptive range, binding, intensity compensation).

1.2 Review of olfactory bulb modelling

1.2.1 Network modelling

Since the pioneering work of Rall and Shepherd [119] there have been many attempts to advance our
knowledge of olfactory bulb function using computational modelling. I use two classifications to structure
the analysis of the published studies: ‘top-down’ vs ‘bottom-up’ and rate-coding vs time-coding.

A top-down model is designed, constrained to a greater or lesser degree by known bulbar anatomy,
to achieve certain high level tasks of the olfactory system, which are hypothesized to be carried out in
the bulb. These models tend to be ‘minimal’, in that the model is made as simple as possible within the
constraints.

A bottom-up model is designed to closely mimic known anatomy and physiology, using experimental
recordings to constrain unknown parameters where possible. In general, little a priori prejudice regarding
the function of the network is used in constructing the model. Such models are limited by the amount of
experimental knowledge and sometimes by computational constraints.

The value of top-down models is that they show what bulb-like systems may be doing, and so may
be a useful source of hypotheses for experimental testing. The problem is that while they may be useful
for opening up avenues of investigation, they are not biologically detailed enough to narrow possibilities
down. They can suggest what the bulb may be doing but have (almost) nothing to say about what it is
doing.

Bottom-up models are in a sense more objective, in that the network behaviour arises naturally out
of the experimental data on the components and is not imposed upon the model. Such models can test
whether existing knowledge is sufficient to explain experimental observations and can produce new ideas
about the bulb’s functions. The main weakness of such an approach is the necessity for simplification
and approximation, due to lack of experimental data and/or computational limitations.



10 CHAPTER 1. INTRODUCTION

The division of modelling studies into these two classes is not rigid, and many studies combine elements
of both approaches. This classification is similar to Bower et al ’s concept of ‘realistic’ (bottom-up) vs
‘demonstration’ (top-down) models [115].

The rate-coding hypothesis is that all information in the output signal of a neurone is carried in the
mean firing rate. The time-coding hypothesis is that information is also, or instead, carried in the time
of occurrence of individual spikes (usually the time relative to some other signal). The extent to which
these two hypotheses are true is widely discussed (see [131] and [137] for two contrasting views on the
subject). The main reason for using this distinction as a classification is the evidence that the temporal
structure of the olfactory response is important in olfactory processing (§1.1.3.4).

One possible ‘top-down’ function of the olfactory bulb is to act as an associative memory, i.e. given
a distorted input the network converges to a stored pattern. Hendin, Horn and Tsodyks [56] have
synthesized their previous work on this topic [54, 55] with the model of Hopfield [58]. Their model ‘. . . is
schematic, trying to capture general principles of information processing rather than present a realistic
description of all details.’ Hopfield’s model [58] is identified with the glomeruli, and performs blind
separation of independent sources based on temporal fluctuations, i.e. during each sniff cycle, one odour
is dominant. The external plexiform layer (EPL) acts as an associative memory, as in [55], but is now
oscillatory, so that the stored pattern is not a fixed point attractor but a limit cycle. The oscillation
is imposed locally, and is not a product of network interactions. Learning in the EPL uses generalised
Hebbian learning rules during training periods. The model of the inputs is consistent with experimental
knowledge. The EPL has all-to-all connectivity. The memory capacity grows as a function of the ratio
of granule:mitral cells.

Another scheme for the OB as an associative memory is put forward by Hoshino, Kashimori and
Kambara [60]. It is again an oscillatory system, with a particular odour producing a particular learnt
limit cycle attractor state. The identity of each constituent molecule is encoded into a single spatial
pattern, and the mixing ratios of component molecules are encoded into the temporal sequence using the
intensity-to-time delay coding scheme proposed by Hopfield [59]. A weakness of this model is that an
important component is the direct interconnection of mitral cells with excitatory synapses. The authors
suggest that these connections may be made by axon collaterals, but anatomical studies have shown that
mitral/tufted cell axon collaterals terminate only in the granule cell layer (see §1.1.1). Another weakness
is that a given odorant molecule is assumed to activate only a single receptor type, in contrast to the
distributed representation seen experimentally (§1.1.3).

Neither of the associative-memory models use the timing of spikes for computation; both use mean
firing rate. However, the temporal sequence of changes in firing rate is important, particularly in [60].

The model of Li and Hopfield [80] is highly simplified, but realistic in that specification of connections
and cell behaviour is based on experimental data. The model uses a continuous input-output function
rather than discrete spikes; however, the authors report similar behavior from simulations in which
single ‘continuous’ cells are replaced by groups of spiking cells. The model reproduces physiological
electroencephalogram (EEG) data. The authors suggest that their model encodes the non-oscillatory
input into oscillatory output, and that downstream components of the olfactory system can extract
odour information from the amplitudes and phases of the oscillations in mitral cell activities. This model
uses ‘rate-coding’, in that no information is carried by precise spike timing. However, the temporal
variation of the rate on a short time scale – the oscillatory response – is important.

The previous model is extended [78] by adding feedback from higher centres to produce the psycho-
physical phenomena of adaptation and sensitivity enhancement. The original model is essentially ‘bottom-
up’, since it is based on experimental data and aims to reproduce physiological observations rather than to
implement some computational algorithm. The extension is top-down since the feedback was designed to
give previously specified high-level behaviour. This work is extended further in [79]: a model of olfactory
cortex is added as an associative memory. The bulb encodes the odour inputs as oscillating patterns
which resonate with stored patterns in the cortex. Feedback from the cortex to bulb allows segmentation
of odour mixtures.

Antón, Lynch and Granger [3] use a hybrid top-down and bottom-up approach. The model, of a
single glomerulus, is biologically detailed, with spiking neurones based on experimental results, with
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conductance-based synapses and realistic synaptic decay times. However, the most important feature of
the model is designed to produce a particular encoding scheme for receptor inputs, which is decided upon
a priori. This encoding scheme is suggested by certain experimental findings, but the imposition of this
scheme on the model represents a top-down approach. The main idea is that the decrease in excitability
of projection neurones with increasing depth [42, 124] could result in an encoding of odour intensity
(i.e. frequency of receptor firing) by a spatial element – how many projection neurones are firing. An
argument against this hypothesis is the observation that mitral and tufted cells have different projection
patterns [70](see §1.1.1) and so are not a single population for the purpose of transmitting information
to cortex.

The intention of White et al [153] was ‘to investigate whether available data are sufficient for formu-
lating a simulated bulb circuit that can generate realistic mitral cell output.’ ‘Realistic’ is judged here by
qualitative comparison of model and experimental voltage traces. The model is very successful in this
respect, but it would be more useful if it went further, e.g. the authors assert that (i) ‘[the model’s output]
can now be the basis for analysing how ensemble events might arise from interactions among these many
individual cellular elements’ and (ii) ‘the various aspects of bulbar behaviour described by these other
models may also potentially be investigated with our model’, but do not go on investigate either avenue.

Linster and collaborators have produced a series of models of both mammalian olfactory bulb [81, 82]
and insect antennal lobe [83, 84, 90]. The models are based on known anatomy, with unknown parameters
(such as synaptic weights and transmission delays) tuned by comparing model output to experimental
physiological data – individual neurone activities and population activities (field potentials and EEG).
Having constructed the models, they are then used to address questions about the role of different
parts of the system, e.g. the distinction between the role of granule and periglomerular interneurones.
The main conclusion of [81] and [82] is that the bulb acts to make the odour representation more sparse:
periglomerular cell activity affects the number of active mitral/tufted neurones, while granule cell activity
determines the response intensity of active mitral cells. Both granule and PG cell activities may be
controlled by centrifugal inputs.

The model of Meredith [92] is a simplified model which attempts nevertheless to represent faithfully
the essential elements of the olfactory bulb. Mitral and PG cells are represented explicitly. Granule cells
are not represented explicitly, but only as mediating recurrent/lateral inhibition: the connection strength
between two mitral cells is proportional to the overlap of their dendritic fields. This is a ‘steady-state’
model, with no consideration of the time course of activity, in which the steady-state output of the system
under a given input is found by an iterative method. The most important assumptions, given Meredith’s
conclusions, are of (i) local connectivity, with connection strengths falling off with distance, and (ii)
localized inputs, i.e. activation of glomeruli falls off radially with distance from a maximal centre. The
model has some interesting properties, for example, that a given cell might be both excited and inhibited
by the same odour, depending on intensity. A corollary is that during an odour pulse (intensity rises then
falls), a given cell may fire or be silent at different phases of the pulse, and that different cells will fire at
different points in time. This is seen in experimental recordings [52, 53]. This property is a consequence
of the locality of the input and of the connections.

1.2.2 Modelling of individual components

In contrast to the large number of network modelling studies of the OB, only a few studies of information
processing in the individual cells of the bulb have been published.

Bhalla and Bower [11] developed extremely detailed, multi-compartmental models of mitral and gran-
ule cells. The morphology of the cells is based on, and cell membrane properties are inferred from,
published data. The only experimentally unknown parameters in their models are the channel densities
in the different regions of their models. These parameters were found by a comprehensive search through
parameter space, based on fitting the model output to experimental current-clamp recordings. Two
weaknesses of the models are that, (i) the anatomical data is from mammalian species while the electro-
physiological data used to fit the parameters is from turtle (however, the authors claim, mammalian and
turtle recordings are qualitatively similar) and, (ii) the physiological data are from single-point recordings
in the soma, so very distal segments of the neurones (e.g. the mitral cell primary dendrite tuft) are much
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less well constrained than the soma and proximal sections. The validity of this model in light of more
recent experimental findings is discussed in §5.2.1.

Aradi and Érdi [4] investigated the behaviour of mitral and granule cell models with the same ion
channels as the Bhalla and Bower models but with simpler morphology. Their findings do not add
significantly to the results of Bhalla and Bower.

A more recent model of olfactory bulb mitral cells was published by Shen et al [132]. This is a less
general model than that of Bhalla and Bower, in that it was created to model a specific phenomenon –
back-propagation and initiation of action potentials in the mitral cell primary dendrite. The model was
fitted closely to current-clamp recordings from two points in the cell – the soma and the distal part of the
primary dendrite, and the primary dendrite of the model is very well constrained. However, the parts of
the cell distal to the recording sites – most importantly the olfactory tuft and the secondary dendrites –
are modelled with little detail, since they have little influence on action potentials in the primary dendrite
shaft, and are not well constrained by the experimental recordings. For this reason this model is not well
suited to be a component of a network model.

Antón, Granger and Lynch [2] developed a compartmental model of a granule cell dendrite with
spines, intended to determine the effect of spines on lateral and recurrent inhibition. The model assumes
fairly fast, graded synapses, and the main result is that high resistance spines and low activity favour
reciprocal over lateral inhibition, and vice versa.

Woolf, Shepherd and Greer [156] present morphologically-detailed, compartmental models of mouse
granule cells, based on camera lucida reconstructions. With entirely passive membrane throughout the
cell, they show that ‘the degree of spread of synaptic potentials can define functionally related subsets of
spines within the dendritic tree . . . that can mediate discrete localized inhibition onto subsets of mitral or
tufted cell secondary dendrites’.

1.3 A strategy for modelling the olfactory bulb

There is no shortage of top-down, abstract models of olfactory bulb function. Such models can be useful
in stimulating and structuring ideas, and in suggesting hypotheses. However, such models are so abstract
that it is very difficult to relate them to experimental data. Even for those models which do not contain
entirely unphysiological connections as crucial elements (such as direct, excitatory, mitral–mitral synaptic
connections), it is hard to conceive of experiments which could be used to choose between competing
explanations.

Bottom-up models are more closely inspired by experimental data, and their predictions are potentially
easier to test. Even here, though, in the published literature, the models for the individual cells of the
network are very simple, either integrate-and-fire or rate models, with at most three compartments per
cell. Many nerve cells do not behave only, or at all, as integrating elements, and it has been shown in
other neural systems that the details of information processing in different cell types can have a large
influence on network behaviour (e.g. [115]).

Detailed models of single cells or components of single cells are the most closely based on experimental
data, and are useful for elucidating principles of information processing by single cells, but it is a truism
that complex behaviours may arise from interacting networks of elements which cannot be predicted from
the behaviour of individual elements.

Given the above considerations, great benefits could be obtained from developing a system of models
to unify the various levels of model-based enquiry into olfactory bulb function. Such a system needs at
least three levels: detailed models of single cells and synapses; networks using simplified versions of the
detailed models; abstract, high-level models based upon the intermediate network models, which can make
predictions at the algorithmic level. Each level must constrain and be constrained by the ‘neighbouring’
levels. Such an approach has been used to good effect in the cerebellum (starting with detailed single cell
models [127, 128, 129] and developing network models based on these [87]), the olfactory cortex (starting
with a network-level simulation [154] which motivated more detailed single cell models. This process is
reviewed in reference [115]) and the hippocampus (from single cell [142, 143] to network [141] models).

It is a primary aim of this dissertation to develop such a system, using where possible existing work.
Top-down models seem adequately represented in the literature, therefore I do not attempt to produce
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another, rather to use my framework to test existing models, where possible. Detailed single-cell models
already exist, notably those of Bhalla and Bower, and though they will need updating as new experimental
data become available, they are good enough for current purposes. The greatest void is in the middle,
and that is where I have concentrated my research effort. An intermediate-level model should have the
following properties:

i. explanatory value – the model aids understanding, giving insight into how the olfactory system
functions and why it is built as it is.

ii. an integrative function - the model provides a framework which integrates the results of different
experiments at different levels of enquiry, to evaluate their consistency with each other and reconcile
conflicting results.

iii. predictive value – the model suggests novel experiments and correctly predicts the results.

Specific biological and computational problems I wish to address are:

i. the existence, origin and role of oscillations/synchronisation;

ii. how the properties of individual cells/synapses influence the network behaviour;

iii. the role of lateral inhibition in the olfactory bulb;

iv. the problem of scaling: how can a model with ten thousand cells approximate a bulb with more
than two million cells? In different terms, how does connectivity influence network behaviour?

1.4 Thesis outline

The structure of this dissertation is as follows:

Chapter 1 Review of the anatomy and physiology of olfactory systems, preparatory to a discussion of
current theories about information processing in the early stages of the olfactory system – ‘the
olfactory code’ – and a review of existing OB models.

Chapter 2 Development of reduced models of the principal cell types of the olfactory bulb, based closely
on experimental data, but simple enough to allow simulation of large networks.

Chapter 3 An examination of the fundamental interaction in the bulb – that between two mitral cells
– using both the cell models developed in the previous chapter and the integrate-and-fire neurone
model.

Chapter 4 Development of network models of the OB. These are calibrated using experimental data
from the literature, and then the properties of the network are investigated, allowing us to make a
number of predictions.

Chapter 5 In the final chapter the findings are summarized and suggestions made for future work.





Chapter 2

Reduction of compartmental models

2.1 Introduction

Morphologically- and physiologically-detailed, multi-compartmental models have been developed for a
number of neurone types [11, 128, 142]. The compartmental approach to neuronal modelling is based on
the representation of neurone axons and dendrites as electrical cables [118]. A compartmental model is
a spatial discretisation of the cable model, approximating the spatially continuous neuronal structure by
chains of discrete, isopotential compartments. This makes the model equations amenable to numerical
solution by computer. For a more detailed introduction to compartmental modelling, see reference [130].
Highly detailed compartmental models have the advantage that the morphology can be accurately mea-
sured and so can provide a strong constraint on the model’s behaviour. However, because of the high level
of detail, simulation of such models is very computationally intensive and the large number of parameters
can make it difficult to interpret or generalise the results.

In order to simulate large networks of these neurones it is necessary to reduce the size and complexity
of the models. A number of strategies have been used to construct such reduced single-cell models. All
take as their starting point a detailed compartmental neurone model and attempt to simplify it while
retaining the electrotonic properties and/or input-output behaviour of the detailed model. One strategy
is to concentrate on the electrotonic properties and reduce the number of compartments in the cell while
conserving the membrane time constants and the cell input resistance [22, 139]. A more drastic strategy
is to attempt to abstract the key features of the cell into as few compartments and channel types as
possible, and constrain the simplified model to have the same input-output properties as the detailed
model, in terms of firing rate response to synaptic or electrical stimulation [110]. Both strategies give
both shorter simulation times and potentially greater understanding than the fully-detailed models.

In this chapter I have used the second strategy mentioned above to construct simplified models of
olfactory bulb mitral and granule cells. The models are based on the detailed, 286-compartment mitral
cell and 944-compartment type I granule cell models published by Bhalla and Bower [11], which were
themselves based on intra-cellular recordings and detailed morphological measurements. I have found
that at least three compartments are necessary for an adequate model of an olfactory mitral cell, with
at least one compartment for each of the soma, secondary (basal) dendrites and glomerular tuft. Four
compartments gives a substantial improvement on three, with little increase in processing time. For the
granule cell, a model with three compartments, representing the deep dendrites, soma and peripheral
dendrite, is optimal. The reduced models give a good fit to the full models over a wide range of firing
rates. The reduced models have the potential to be a useful tool in realistic network modelling of the
olfactory bulb.

15
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2.2 Method

Bhalla and Bower’s mitral and granule cell models were re-implemented in the neural simulator Neuron
and tested against their original Genesis implementation. The two implementations gave qualitatively
the same results but had small quantitative differences (of a few percent in firing rates) which were
pinpointed as being due to alternative numerical strategies, mainly the use of symmetric compartments
by Neuron and asymmetric compartments by Genesis.1

2.2.1 Mitral cell models

2.2.1.1 Modification of the Bhalla-Bower model

The results presented by Bhalla and Bower are for stimulating electrodes in the soma. This provides a
fairly weak constraint on the models – as Bhalla and Bower noted, some parameters can be varied by an
order of magnitude with minimal effect on the output.

Since all or almost all of the excitatory input received by mitral cells is to the glomerular dendritic
tuft, I first briefly examined the response of their model to glomerular input. When depolarising current
is injected into the soma of Bhalla and Bower’s mitral cell model, the cell responds with regular firing.
With current injected into the glomerular compartments the model produces a double spike at the soma
then settles down to regular firing (Figure 2.1A). This double spike is produced by a large, extended
calcium spike in the glomerulus (Figure 2.1B). Is such behaviour observed experimentally?

In about half of recorded rat mitral cells, Chen and Shepherd [25] observed fast pre-potentials in
response to olfactory nerve stimulation, indicative of dendritic excitability, but these are small amplitude
events, not full action potentials. Chen, Midtgaard and Shepherd [24] recorded from the primary dendrite
just proximal to the glomerular tuft as well as from the soma, and on some occasions observed an action
potential in the dendrite preceding that in the soma. These were of similar width to the somatic action
potentials, not the extended depolarisation seen in the Bhalla-Bower model. Apparent double spikes have
been observed when the cell is already depolarised (see Figure 6A of [103]), but these appear to be rare
occurrences. Therefore, I conclude that the glomerular tuft in Bhalla and Bower’s model, as it stands,
is over-excitable. A simple parameter change was found to eliminate the double spiking – increasing
the density of slow potassium delayed rectifier (K) channels in the glomerular compartments by a factor
of five produces only a short calcium spike which gives rise to a single spike at the soma (Figure 2.1).
Increasing the K channel density by a further factor of five eliminates the glomerular/dendritic calcium
spike and increases the latency of the somatic spike. These changes in K channel density have no visible
effect on the model response to somatic current injection (data not shown). For fitting of the reduced
models I used a K channel density in the glomerular compartment of ḡK = 0.02 S cm−2, about seven
times larger than that used by Bhalla and Bower. All other parameter values were as published by them.

2.2.1.2 Description of reduced models

To simplify the models I used the same strategy as Pinsky and Rinzel [110] in their simplification of
Traub’s hippocampal pyramidal neurone model [142, 143] – namely to retain the same active currents
and gating kinetics, with the same channel densities/maximum conductances, but to reduce drastically
the number of compartments.

The full Bhalla and Bower mitral cell model has 286 compartments; I investigated simplifications
with two, three or four compartments. The two-compartment model has one compartment for the
soma and one for the primary dendrite tuft in the glomerulus. The three-compartment model adds
a compartment for the secondary dendrites. The four-compartment model (Figures 2.2 and 2.3 show
schematic representations) adds a compartment for the primary dendrite shaft between the soma and
glomerular tuft. It should be made clear that the relationship between the reduced models is one of
adding or removing entire compartments. It is not the case that compartment number is reduced by
merging compartments and averaging their properties, although that would also be a valid approach.

1With symmetric compartments, the axial resistance between child and parent compartments is the average of the
resistances of the two compartments. With asymmetric compartments, the axial resistance is that of the child compartment.
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Figure 2.1: Response of the full model to a total constant current of 0.4 nA to the glomerulus, divided evenly
among the compartments (∼ 4.3 pA per compartment). (A) Somatic membrane potential trace and (B) Membrane
potential trace at base of glomerular tuft, for varying ḡK in the tuft. These figures show the double somatic spike
and extended dendritic calcium spike seen with low ḡK, that are removed by increasing the value of the parameter.
Further increasing ḡK delays the somatic spike and abolishes the dendritic calcium spike.
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The correspondence of these compartments to the parts of the real neurone is of course only approximate
in such a reduced model. Bhalla and Bower used different conductances in the proximal and distal sections
of the secondary dendrites. The secondary dendrite compartment in the reduced models includes only the
distal dendrite conductances. The axon is not represented explicitly in my models. It may be considered
to be subsumed into the soma compartment.

The current balance equations for the four compartments (soma, glomerulus, primary dendrite, sec-
ondary dendrite) are:

CmV ′
s = −gpas(Vs − Erest)− gNa(Vs − 45)− gKfast(Vs + 70)− gK(Vs + 70)

−gKA(Vs + 70)− gKCa(Vs + 70)− gLCa(Vs − 70) + (gsd/p)(Vd − Vs)
+(gsp/p)(Vp − Vs) + Is/p (2.1)

CmV ′
g = −gpas(Vg − Erest)− gK(Vg + 70)− gLCa(Vg − 70) + (gpg/q)(Vp − Vg)

+Ig/q (2.2)
CmV ′

p = −gpas(Vp − Erest)− gNa(Vp − 45)− gKfast(Vp + 70)− gK(Vp + 70)
−gLCa(Vp − 70) + (gsp/r)(Vs − Vp) + (gpg/r)(Vg − Vp) (2.3)

CmV ′
d = −gpas(Vd − Erest)− gNa(Vd − 45)− gKfast(Vd + 70)

+(gsd/s)(Vs − Vd) (2.4)

where Vs, Vg, Vp and Vd are the membrane potentials of the somatic, glomerular, primary dendritic and
secondary dendritic compartments respectively and Erest is the resting membrane potential (-65 mV).
Currents and conductances are expressed as densities with units of µA cm−2 and mS cm−2 respectively.
Capacitance (Cm) has a value 1.0 µF cm−2 and time is in units ms. The Hodgkin-Huxley formalism is
used for all channels. The gating equations for the channels are exactly as given by Bhalla and Bower [11].
p is the ratio of the surface area of the soma compartment to the total cell membrane area; q, r and s are
the ratios of the glomerular, the primary dendrite and the secondary dendrite surface areas respectively to
the total surface area (p+q+r+s = 1). gsd, gsp, gpg are the conductances joining the soma and secondary
dendrite, soma and primary dendrite, and primary dendrite and glomerular compartments respectively.
The equations are similar for the two- and three-compartment models, but with gsg instead of gsp and gpg.
The maximum conductance values are given in Table 2.1. The sodium and calcium reversal potentials are
the values used by Bhalla and Bower. They are somewhat low, although not entirely outside the range of
what is seen experimentally. Similarly, the potassium rversal potential is not sufficiently negative. The
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Figure 2.2: The 286-compartment and four-compartment mitral cell models, showing the approximate correspon-
dence of the cell regions. The area of the blocks in the representation of the reduced model is proportional to the
surface area of the compartments.
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Figure 2.3: Schematic of the four-compartment model showing ion channels and points of stimulation. Currents are
sodium (INa), slow potassium delayed rectifier (IK), fast potassium delayed rectifier (IKfast), potassium anomalous
rectifier (IKA), calcium-dependent potassium (IKCa) and L-type calcium (ILCa). The conductances between soma
and secondary dendrite, soma and primary dendrite, and primary dendrite and glomerulus are gsd, gsp and gpg

respectively. Is and Ig are the currents injected into the soma and glomerular tuft respectively.
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Compartment Na Kfast LCa K KA KCa
Soma/axon 1532 1956 40 28 58.7 142
Glomerular tuft 0 0 95 200 0 0
Primary dendrite 134 123 22 174 0 0
Secondary dendrites 226 330 0 0 0 0

Table 2.1: Channel distribution for the reduced mitral cell models. The values are the maximum conductance
values in Sm−2.

exact values of the reversal potentials is not critical, as any change in their values could be compensated
for by changing the experimentally-unknown values of the peak conductances.

The stimulating currents Is and Ig are given by:

Is = αsIfull (2.5)
Ig = αgIfull (2.6)

where Ifull is the stimulating current applied to the soma or glomerular compartment of the full model and
αs and αg are constant factors. These ‘current factors’ are intended to adjust for differences in the input
resistance of the models. For each run the current inputs were set to zero for the first 50 ms then stepped
up to Is or Ig. A current step was used to stimulate the models to match the current clamp stimulation
used by Bhalla and Bower. To test whether a current step is a good approximation to synaptic input in
the glomerulus I modelled synaptic input with 940 AMPA and NMDA synapses, with equal maximum
conductances (100 pS) receiving input from independent Poisson processes with mean rates from 4 to
200 Hz. I observed an approximately linear relationship between the constant current needed to produce
a particular output firing rate and the synaptic input frequency needed to produce the same output rate
(Figure 2.4). Therefore I concluded that constant current was a reasonable approximation to synaptic
input in these cells.

2.2.1.3 Fitting the models

The maximum conductances of the voltage-gated currents and the membrane capacitance were all fixed
to the values used in Bhalla and Bower [11]. The numbers of parameters are therefore four, six and eight
for the two-, three- and four-compartment models respectively. It would of course be possible to vary
the maximum conductances to obtain a better fit. However, this would add fourteen extra parameters
for the four-compartment model, hence increasing the difficulty of fitting the model and increasing the
possibility of over-fitting.

I used the Simplex algorithm [112] to fit the simplified models to the full model. The Simplex algorithm
is a method for function minimization that does not require function derivatives or line minimizations.
In an n-dimensional parameter space, a simplex is a geometric figure with n + 1 vertices, e.g. a triangle
in two dimensions or a tetrahedron in three dimensions. Each vertex is a point in parameter space.
The value of the error function (i.e. the goodness-of-fit of the reduced model to the full model) is
evaluated at each vertex, and the vertex with the largest error is discarded. A new vertex is found using
various transformations of the simplex, including reflections, expansions and contractions in one or more
dimensions. The error function is then evaluated at the new vertex and the sequence repeated. In this
way, the simplex ‘crawls’ about in parameter space, always discarding the point with the largest error.
The Simplex method is slower than methods using line minimizations (e.g. Powell’s or Brent’s methods -
see [112]) but has the advantage that it is less likely to get stuck in local minima, since the error function
is evaluated at several points (the vertices), not just one.

I used two criteria for evaluating goodness of fit. The preliminary criterion was:

• the squared difference between voltage traces of simplified and full models over the first 200 ms for
current injection to the soma of Ifull = 0.4 µA cm−2.

This criterion is referred to henceforth as ‘fit-to-shape’. It was hoped that fitting to spike shape, rather
than simply to firing rate, would capture some of the important features of the full model dynamics, so
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Figure 2.4: Comparison of Poisson process synaptic input with constant current approximation. (A) Mean output
firing frequency (inverse of mean of nine inter-spike intervals) as a function of mean input frequency (+) and of
input current (×). (B) Input current plotted against the mean input frequency which produces the same output
frequency as the current. The ordinates come from fitting a logarithmic function to the graph of output frequency
vs input current then reading off the equivalent current at each output frequency of the synaptic input data. The
resulting function is clearly non-linear, but follows a linear function quite closely.
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that fitting at one input level would give a good fit at all levels. This proved not to be the case (see
Results), so a second criterion was used which explicitly averages over input levels and over somatic and
‘synaptic’ inputs:

• the squared proportional difference in spike time for the first four spikes, summed over current
injections of Ifull = 0.2, 0.4, 0.8, 1.6 µA cm−2 to the soma and to the glomerulus, i.e., if treduced

k and
tfull
k are the times of the peaks of the kth spikes in the reduced and full models, then

error =
∑
soma

glomerulus

∑
Ifull

4∑
k=1

(
treduced
k − tfull

k

tfull
k

)2

(2.7)

This criterion is referred to henceforth as ‘fit-to-time’.
These criteria capture both the transient and steady state behaviour of the models, since the models

settle down very quickly into regular firing (the difference between the firing rate calculated from the
mean of the first three inter-spike intervals (ISIs) and that calculated from the mean of the fiftieth to the
hundredth ISIs is 0.8% for 1.0 nA input and 0.2% for 0.1 nA input to the full model. The firing rates
plotted in Figures 2.8 and 2.10 were calculated from the first three ISIs). The range of input currents
used produces output firing over the range 10-100 Hz.

2.2.2 Granule cell models

2.2.2.1 Description of reduced models

The full Bhalla and Bower granule cell model has 944 compartments; I investigated simplifications with
two or three compartments. The three compartment model has deep dendrite, soma and peripheral
dendrite compartments. These correspond to the regions in the full model with uniform channel distri-
butions, excepting the ‘trunk’ region which is not explicitly modelled here. The two compartment model
lumps together the soma and deep dendrites. A schematic of the three compartment model is shown in
Figure 2.5.

The current balance equations for the three compartments (soma, peripheral dendrite, deep dendrite)
are:

CmV ′
s = −gpas(Vs − Erest)− gNa(Vs − 45)− gKM(Vs + 70)− gK(Vs + 70)

−gKA(Vs + 70) + (gsd/u)(Vd − Vs) + (gsp/u)(Vp − Vs) + Is/u (2.8)
CmV ′

p = −gpas(Vp − Erest)− gNa(Vp − 45)− gK(Vp + 70) + (gsp/v)(Vs − Vp) (2.9)
CmV ′

d = −gpas(Vd − Erest) + (gsd/w)(Vs − Vd) (2.10)

where Vs, Vp and Vd are the membrane potentials of the soma, peripheral dendrite and deep dendrite
compartments respectively. Note that the latter two symbols are the same as for the mitral cell primary
and secondary dendrites respectively. Which cell is being referred to will be made clear throughout. u, v
and w are the ratios of the surface areas of the soma, peripheral dendrite and deep dendrite compartments
respectively to the total cell membrane area (u+v+w = 1). gsd and gsp are the conductances joining the
soma and deep dendrite, and soma and peripheral dendrite compartments respectively. All other symbols
are as for the mitral cell model. Note that the sodium channel is not the same as in the mitral cell model,
but the K and KA channels are the same (see [11] for more details). The maximum conductances of
the voltage-gated currents and the membrane capacitance were all fixed to the values used in Bhalla and
Bower, as for the mitral cell model. The maximum conductances are summarised in Table 2.2.

2.2.2.2 Fitting the models

Because fitting to spike times rather than to spike shape was found to be of great advantage for the mitral
cell model, only the former fitting method was used for the granule cell. At intermediate input levels, the
full granule cell model shows spike time adaptation (probably due to the KM current), in contrast to the
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Figure 2.5: Schematic of the three compartment granule cell model showing ion channels and point of stimula-
tion. Currents are sodium (INa), slow potassium delayed rectifier (IK), potassium anomalous rectifier (IKA) and
muscarinic potassium (IKM). The conductances between soma and peripheral dendrite and between soma and
deep dendrites are gsp and gsd respectively. Is is the current injected into the soma.

Compartment Na K KM KA
Soma 1611 1313 1334 88
Deep dendrites 0 0 0 0
Peripheral dendrites 1355 243 0 0

Table 2.2: Channel distribution for the reduced granule cell models. The values are the maximum conductance
values in Sm−2.
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mitral cell model (compare Figures 2.6 and 2.13), so six spikes were used for the error measure, rather
than four, to better capture both the transient and steady-state behaviours. Five input levels were used:
Ifull = 0.01, 0.03, 0.1, 0.3 and 1.0 µA cm−2. In summary,

error =
∑
Ifull

6∑
k=1

(
treduced
k − tfull

k

tfull
k

)2

(2.11)

where the symbols are defined as for Eq.2.7.

2.2.3 Numerical methods

All models were simulated in Neuron Version 4.1. running on a Digital XP1000 workstation under Digital
Unix. The integration method for the fit-to-time optimisations was the Neuron inbuilt global variable-
time-step method with default parameters and for the fit-to-shape optimisations was the default fixed-
time-step method with time step 25 µs. The Simplex algorithm was taken from Numerical Recipes [112].
The Neuron scripts for the reduced models are given in Appendix B. As a check, the four-compartment
mitral cell model was also simulated in XPP. The agreement between Neuron and XPP was very good
(difference of 0.21 ms after five spikes/180 ms).

2.3 Results

2.3.1 Mitral cell model

2.3.1.1 Fitting to the spike shape

The fit-to-shape error measure has an important limitation, illustrated by the observation that a simplified
model firing with the same frequency as the full model but out of phase with it has a larger error than
a model which does not fire at all, although qualitatively it would be regarded as a better match.
Nevertheless, using a manual search to obtain a coarse fit and the Simplex optimisation algorithm to
refine this, fits were obtained for the two-, three- and four-compartment models. Figure 2.6 shows the
response of the full model and reduced models to current injection of Ifull = 0.4 µA cm−2 to the soma.
The parameter values are given in Table 2.3. The fit is poor for the two-compartment model, with a
reset potential of -58 mV compared to -65 mV for the full model (Figure 2.6A). The fit is good for the
three- and four-compartment models, with the four-compartment model coming closest to reproducing
the rapid initial post-spike rebound followed by slower depolarisation exhibited by the full model. The
rebound is interpreted as being due to current flow from the calcium channels in the glomerulus to the
soma. This is borne out by an experiment in which these channels were removed from the glomerulus
of the full model (data not shown). The addition of the primary dendrite compartment in going from
three to four compartments is important in delaying the arrival of this current at the soma. The role
of the secondary dendrite compartment is chiefly to slow the firing rate. The three-compartment model
exhibits a kink in the down-slope of the action potential, which is due to delayed firing in the secondary
dendrite.

A good fit under one input condition does not guarantee a good fit under all conditions. Figure 2.7
shows the discrepancy between the full model and the reduced models with the injected current amplitude
doubled. In the three-compartment model, the delay in firing of the secondary dendrite is even more
pronounced.

2.3.1.2 Fitting to spike times

The second error measure produces a closer fit in spike timing over a range of input currents (Figure 2.8).
This is unsurprising since the error measure was designed with this aim in mind. In addition, this error
measure is much smoother than the first, and gives greater confidence that the minimum found is close to
the global minimum. Fitting to spike shape leads to differences of up to 32% in firing frequency and 76%
in the latency of the first spike, for the four-compartment model in the frequency range 10-120 Hz with
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Figure 2.6: Somatic membrane potential trace for full and reduced models with Ifull = 0.4 µAcm−2 after fitting
to spike shape. Both three- and four-compartment models give good fits to the full model. The two-compartment
model has a markedly raised reset potential.

Fit to spike shape Fit to spike times
2 3 4 2 3 4

p 0.166 0.0500 0.0475 0.274 0.0845 0.0510
q - 0.299 0.184 - 0.140 0.0840
r - - 0.216 - - 0.328

gsg 8.39×10−4 4.87×10−5 - 2.09×10−3 4.44×10−5 -
gsd - 1.85×10−4 3.31×10−2 - 3.13×10−4 1.94×10−4

gsp - - 2.33×10−4 - - 5.47×10−5

gpg - - 4.08×10−4 - - 5.86×10−5

αs 1.43 1.35 1.44 2.60 1.78 1.37
αg - - - 3.02 1.84 1.85

Table 2.3: Best fit parameter values for 2-, 3- and 4-compartment reduced mitral cell models. Units of gsg, gsd,
gsp and gpg are S cm−2. Other parameters are dimensionless.
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Figure 2.7: Somatic membrane potential trace for full and reduced models with Ifull = 0.8 µA cm−2 after fitting
to spike shape with Ifull = 0.4 µA cm−2. The miniature spike on the down-slope of the action potential in the
three-compartment model is due to the delay between spiking in the soma and in the secondary dendrite.
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Figure 2.8: Comparing fit-to-shape to fit-to-time for the four-compartment model. (A) Firing frequency, (B)
Latency of first spike. Current was injected in the soma compartment. The four compartment model with fit-to-
shape parameters shows almost zero deviation from the full model with current injection 0.4 µA cm−2, the level
at which it was fitted, but large differences with higher or lower inputs. In contrast, the four-compartment model
with fit-to-time parameters fits reasonably well over a wide range of input levels.
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Figure 2.9: Somatic membrane potential trace for full and four-compartment models with Ifull = 0.2 µA cm−2

and 1.6 µA cm−2 after fitting to spike timing. (A) Current injection to soma. (B) Current injection to glomerulus.
The models fit well in terms of first spike latency and firing frequency, but there are discrepancies in the detailed
shape of the membrane potential traces. This illustrates one of the problems with very-reduced compartmental
models.

current injection to the soma. The maximum differences are only 13% and 14% after fitting the same
model to spike times. After fitting to spike times the spike shapes of the reduced models are similar to
that of the full model but with a deeper hyperpolarisation after the spike and a kink in the down-slope
of the action potential, due to delayed firing in the secondary dendrite (Figure 2.9).

For somatic current injection, all three reduced models have qualitatively the same behaviour as the
full model, but the three- and four-compartment models have a much better quantitative fit to the full
model than does the two-compartment model (Figures 2.10A,C).

Injecting current into the glomerulus leads to more complex behaviour than somatic injection. Above
a certain level, about 1.1 µA cm−2 for the full model (giving a firing rate of 40 Hz), the first spike is
suppressed by a large slow potassium current in the glomerulus (caused by a large calcium spike) (note the
step in first spike latency in Figure 2.10D) and the steady-state firing rate is also depressed (Figure 2.10B).
The three- and four-compartment models also exhibit this behaviour, although the threshold for the
transition differs slightly. Discounting the large differences which occur near this transition, the largest
difference in firing rate between reduced and full models for somatic or glomerular current injection is
14% for the four compartment model and 22% for the three-compartment model.
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Figure 2.10: Comparing reduced models with two, three and four compartments, with fit-to-time parameters:
(A) Firing frequency as a function of current for stimulation of soma; (B) as A for stimulation of glomerulus; (C)
Latency of first spike as a function of current for stimulation of soma; (D) as C for stimulation of glomerulus.
The three- and four-compartment models fit the full model closely for a wide range of input levels and for both
somatic and glomerular inputs. The two- compartment model gives a tolerable fit for somatic input and for low
glomerular input, but deviates considerably for high glomerular input.
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Number of compartments
2 3

u 0.0220 0.0136
v - 0.308

gsp 2.31×103 3.08×10−4

gsd - 4.34×10−4

αs 0.950 0.625

Table 2.4: Best fit parameter values for reduced granule cell models. Units of gsd and gsp are S cm−2. Other
parameters are dimensionless.

2.3.1.3 Simulation time

The processor time taken to simulate one hundred spikes (using the variable time step integration method)
with a current injection of 0.4 µA cm−2 to the soma is as follows: two-compartment model 1.8 seconds;
three-compartment model 2.5 seconds; four-compartment model 2.9 seconds; full model 219 seconds.
The four-compartment model gives a 75-fold reduction in simulation time over the full model and the
two-compartment model a 120-fold reduction.

2.3.2 Granule cell model

2.3.2.1 Fitting to spike times

After fitting, the three-compartment granule cell model agrees closely with the full model in terms of
firing frequency, first spike latency, and spike shape, over two orders of magnitude in input current (see
Figures 2.11, 2.12 and 2.13). The two-compartment model is much less satisfactory (Figure 2.12). The
fitted parameter values are shown in Table 2.4. The value of gsp for the two-compartment model is
very large, so the cell is effectively a single compartment. The deep dendrites (which have no active
conductances) are clearly required to reproduce the full model behaviour.

2.3.2.2 Simulation time

The processor time taken to simulate one thousand spikes (using the variable time step integration
method) with a current injection of 0.05 µA cm−2 to the soma is as follows: two-compartment model
17 seconds; three-compartment model 20 s; full model 1164 s. With a current of 0.6 µA cm−2, the
processor times are 13 s, 15 s and 898 s. These currents were chosen to minimise the differences in firing
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Figure 2.11: Comparing reduced and full granule cell models: firing frequency as a function of injected current.The
three compartment model agrees closely with the full model over a broad range.
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Figure 2.12: Comparing reduced granule cell models with two and three compartments: (A) Difference in firing
frequency between the reduced and full models, (B) Difference in latency of first spike between the reduced and
full models. Current was injected in the soma compartment. The three compartment model agrees closely with
the full model over a broad range. The two-compartment model is much less satisfactory.
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Figure 2.13: Somatic membrane potential trace for full and three-compartment granule cell models with
Ifull = 0.01, 0.1, and 1 nA. The reduced model fits the full model well both in quantitative spike times and
in qualitative features of spike shape.



2.4. DISCUSSION 33

rate between the three models (see Figure 2.11). The three-compartment model gives a 60-fold reduction
in simulation time over the full model and the two-compartment model a 70-fold reduction.

2.4 Discussion

The four- and three-compartment mitral cell models give good qualitative and quantitative fits to the
fully-detailed model. In particular they exhibit the same rather complicated calcium channel-related
behaviour at high input levels as the full model, in which a calcium spike in the glomerulus causes the
opening of slow potassium channels which then suppress the sodium spike at the soma. This behaviour
was not a criterion for fitting – it arises naturally from the model structure. Since the three-compartment
model exhibits the correct qualitative behaviour, and adding a fourth compartment produces only a small
quantitative increase in accuracy at the expense of increased simulation time, it was not thought necessary
to test models with five or more compartments.

How do the fitted parameters of the reduced models compare to those of the full model? For the full
model p = 0.056 (lumping soma and axon areas together), q = 0.078, r = 0.11 and s = 0.75. These
are not very dissimilar to the area ratios of the three- and four-compartment models (see Table 2.3).
The axial conductances are also similar in magnitude in the full model compared to the reduced models,
although the current factors αs and αg are greater than 1, suggesting lower input resistance for the
reduced models.

How unique are the fitted parameters? The optimisation procedure I used to fit the models can only
ever guarantee to find a local minimum. By restarting the search many times from different points in
parameter space I am reasonably confident that the parameters I have found are close to the global
minimum.2 Combining the Simplex algorithm with simulated annealing has been shown to be the best
strategy for parameter fitting for small compartmental models [147]. My simpler strategy is less time
consuming to implement and run, however. However there are certainly other minima which give good fits.
For example, one local minimum for the four-compartment model has gsd effectively zero, reducing the
four-compartment model to a three- compartment one with only soma, primary dendrite and glomerulus.
The most tightly constrained parameters are the areas of the soma and glomerulus. The area of the
secondary dendrite compartment and the gsd conductance have the widest margins of error.

This investigation has emphasised the importance of using a wide input range when fitting a model.
The reduced models fit the full model well within the range of firing rates 10–120 Hz. The lower end
of this range corresponds to the experimental mean rate of spontaneous firing in mammals [12, 53]; the
higher end is seen experimentally during bursts [100]. It would be possible to re-fit the model to cover a
lower range if the high input regime was not of interest.

The agreement between the three-compartment reduced and the full granule cell models is at least as
good as the agreement for the mitral cell case. The range of firing rates over which the fit is good is shifted
downwards compared to the mitral case, being about 2–50 Hz. Three compartments are optimum for the
granule cell, compared to four for the mitral cell. This probably reflects the more complex morphology
of the full mitral cell model.

The true test of any models such as these is their behaviour in a network. The greatly improved speed
(and memory requirements) of these models compared to the fully-detailed models should allow network
simulations with thousands of cells – still far fewer than the fifty thousand or so mitral cells and millions
of granule cells in the real bulb [121], but potentially allowing realistic behaviour to be simulated and a
bridge built between single cell and network level properties.

The models of Bhalla and Bower are anatomically and physiologically detailed and were carefully
fitted to current clamp recordings, but they are by no means the last word in mitral and granule cell
models. As new data and new models become available it will be important to adjust the reduced models
to take account of these.

The next task is to assemble these reduced single cell models into a network model.

2The search was restarted about twenty times for each model. On average, about half of these converged to a minimum
with an error within 1% of the lowest error. The others converged to higher local minima.
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Much of the material in this chapter has previously been published in reference [32]



Chapter 3

Mitral cell interactions: phase
locking in two-cell systems

3.1 Introduction

To approach an understanding of the olfactory bulb, an understanding of the interactions between dif-
ferent mitral/tufted cells is critical, as these are the cells that transmit olfactory information to the
cortex. Mitral/tufted cells do not interact directly, but only indirectly via interneurones: granule and
periglomerular cells (see §1.1.1).

The inhibition between the mitral cells may affect both the mean firing rate and the detailed tempo-
ral structure of firing. Both experimental and theoretical results motivate a particular consideration of
synchronization between the mitral cells. Prominent oscillations in field potential responses in vertebrate
olfactory bulb [1, 74] are suggestive of synchronization of neuronal firing [37], and recent intracellular
recordings have shown close synchronization of spike firing times in about 25% of recorded mitral cell
pairs [67]. In the antennal lobe of honeybees, synchronization of projection neurone spiking has been
shown to have behavioural importance [138]. For more detail, see §1.1.3. Spike synchronization in pulse-
coupled networks of spiking neurones has been extensively studied theoretically and using computer
simulations (see, for example, [27, 46, 146]), with most emphasis on the case of homogeneous networks.
Both excitatory and inhibitory connections frequently produce either synchrony or antisynchrony, de-
pending on the conditions. This literature is reviewed further in the Discussion section of this chapter
(§3.4).

In this chapter, I investigate the simplest possible system: just two mitral cells. This makes it easier
to obtain analytical results and allows a more comprehensive evaluation of the system properties. The
disadvantage is that results may not generalise to larger networks. Larger networks are considered in the
next chapter.

I consider two systems: (a) a two-cell system consisting of two mitral cells with direct inhibitory
contacts (Figure 3.1A); (b) a three-cell system consisting of two mitral cells and one interneurone (Fig-
ure 3.1B). The interneurone could be a granule cell or a periglomerular cell. Each mitral cell has an
excitatory connection to the interneurone, and an inhibitory connection from it. All connections are
pulse-coupled: a spike in the pre-synaptic cell is required to trigger an excitatory/inhibitory event in the
post-synaptic cell. These two systems are equivalent when the mitral–interneurone excitatory connection
is strong enough that a single mitral cell spike leads to an interneurone spike.

This chapter will proceed as follows: I begin by analysing the two-cell system with the leaky integrate-
and-fire (LIF) model. This has the advantage that it is amenable to mathematical analysis. I show
that the cells can synchronize or phase-lock their firing and derive the conditions for this to occur.
I then analyze the possible states of the system when phase-locking breaks down: harmonic locking
and suppression. This analysis is extended to more complex synaptic connections between the two
cells. The biophysical models (Chapter 2) are more realistic than the LIF model, but are not amenable

35
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Figure 3.1: (A) Two mitral cell (m) system with direct inhibitory connections. (B) Two mitral cell system with
inhibition mediated via an interneurone (g).

to mathematical analysis. I therefore use numerical simulation to study the network with the four-
compartment mitral cells, and to compare its behaviour to the LIF network. I find that the LIF and
biophysical networks have similar behaviours – both exhibit phase-locking, for example – but that there
are some differences. I then study the three-cell system using first the LIF models and then the biophysical
models (four-compartment mitral cell and three-compartment granule cell models). Mediating inhibition
via an interneurone rather than directly can also produce phase-locking and harmonic locking, but more
complex behaviour is also seen.
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3.2 Direct mitral–mitral inhibition

3.2.1 The integrate-and-fire model

I consider the leaky integrate-and-fire model, in which the membrane potential V evolves in time according
to the current balance equation:

C
dV

dt
= −V

R
+ I(t) (3.1)

(where C is the cell membrane capacitance, R is the membrane resistance, and I is the current input)
until V reaches some threshold value Vθ, at which point it is reset to some baseline value which can be
taken to be zero with no loss of generality.

If I(t) is a constant value, I, the solution to equation 3.1 is

V (t) = IR + (V (0)− IR)e−t/RC (3.2)

The natural firing period (that is, with no synaptic input) of the cell, T , may be obtained by setting
V (0) = 0 and V (T ) = Vθ:

T = RC ln
(

IR

IR− Vθ

)
(3.3)

I consider a system of two integrate-and-fire cells, with identical parameters except that Cell 1 receives
a higher level of input than Cell 2. The cells interact as follows: when the membrane potential of either
cell reaches threshold there is a delay of time td after which the membrane potential of the other cell is
instantaneously reduced by a constant amount ∆V .

It will be convenient to define the following quantities:

τ = RC

θ =
I2R− Vθ

I2R

δ =
∆V

Vθ

α =
I1 − I2

I2

I2R is the equilibrium level which the membrane potential of Cell 2 would reach if it did not reset. For
the cell to fire at all requires I2R > Vθ, hence 0 < θ < 1. The parameter θ controls the non-linearity of
the system. If θ is large, V reaches threshold rapidly and approximately linearly; if θ is close to zero, V
approaches the threshold slowly and non-linearly. α is a measure of the heterogeneity of the inputs. Cell
1 is defined to be the cell receiving the highest input, so α ≥ 0.

We may now rewrite equation 3.2 for the two cells as:

x1(t) =
1 + α

1− θ
+
(

x1(0)− 1 + α

1− θ

)
e−t/τ (3.4)

x2(t) =
1

1− θ
+
(

x2(0)− 1
1− θ

)
e−t/τ (3.5)

where x(t) = V (t)/Vθ varies between 0 and 1.

3.2.2 Existence of phase-locked solutions

Due to the different input levels to the cells, the cells have different ‘natural’ firing periods (the period
between consecutive instances of the cell membrane reaching threshold, under conditions of no interactions
between the cells). We wish to determine whether the cells will synchronize or phase-lock their firing
and, if so, under what conditions. We will proceed as follows: first we derive the return map for the
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Figure 3.2: Possible firing patterns of two neurons with inhibitory connections: (A) Both cells fire before either is
inhibited (tL < td); (B) Cell 2 is inhibited earlier than it fires (tL > td). Parameters: θ = 0.2, δ = 0.2, α = 0.02,
td = 0.3τ . Solid line - Cell 1; dashed line – Cell 2

system, i.e. the (n + 1)th time lag, tn+1
L , as a function of the nth time lag, tnL (§3.2.2.1). Then we assert

that the condition for 1:1 phase-locking, tn+1
L = tnL, is true and show that the return map equation has a

solution in this case (§3.2.2.2). Finally we show that this solution is stable (§3.2.2.3). The assumptions
made in deriving the return map can be used to determine the region of parameter space within which
1:1 phase-locking can stably exist (§3.2.2.4).

3.2.2.1 Derivation of return map

If Cell 1 fires at time t, and Cell 2 fires at time t + tnL then there are two possibilities, for td > 0:

A. tnL < td - both cells fire within the delay time. (Figure 3.2A)

B. tnL > td - Cell 2 is inhibited before it fires. (Figure 3.2B)

I further make the assumption that α is sufficiently small that Cell 1 fires only once before Cell 2 fires –
I shall later derive the conditions for this to be true (Equations 3.25, 3.26 and 3.27).

For case A we see from equation 3.4 that immediately before receiving the downward step in x1,

x1(tnL + td) =
1 + α

1− θ

(
1− e−(tn

L+td)/τ
)

(3.6)

Denoting the time to threshold from this point as t∗,

1 = x1(tnL + td + t∗)

=
1 + α

1− θ
+
[
1 + α

1− θ

(
1− e−(tn

L+td)/τ
)
− δ − 1 + α

1− θ

]
e−t∗/τ (3.7)

and hence

t∗ = τ ln
(

(1 + α)e−(tn
L+td)/τ + δ(1− θ)
θ + α

)
(3.8)
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Figure 3.3: The return map for 1:1 firing (solid line) showing the convergence to tEL of trajectories from two
different initial conditions (long-dashed lines). With the parameters used here α = 0.01, δ = 0.1, θ = 0.2 and
td = 0.3τ , there are two stable equilibria, corresponding to cases A and B.

so Cell 1 fires next after an interval

Tn
1 = tnL + td + t∗ = τ ln

(
1 + α + δ(1− θ)e(tn

L+td)/τ

θ + α

)
(3.9)

Cell 2 receives the downward step a time td − tnL since it last fired, and so fires next after an interval

Tn
2 = τ ln

(
1 + δ(1− θ)e(td−tn

L)/τ

θ

)
(3.10)

The new time lag,

tn+1
L = tnL + Tn

2 − Tn
1 (3.11)

= tnL + τ ln

(
(θ + α)

(
1 + δ(1− θ)e(td−tn

L)/τ
)

θ
(
1 + α + δ(1− θ)e(td+tn

L)/τ
) ) (3.12)

For case B, (Figure 3.2B), Cell 1 receives the downward impulse after time tnL + td, as for case A, and
Tn

1 is given by equation 3.9 above. Cell 2 receives the impulse a time Tn
1 − tnL + td since it last fired, hence

Tn
2 = τ ln

(
1 + δ(1− θ)e(T n

1 −tn
L+td)/τ

θ

)
(3.13)

and

tn+1
L = tnL + τ ln

(
θ + α + δ2(1− θ)2e2td/τ + δ(1 + α)(1− θ)e(td−tn

L)/τ

θ
(
1 + α + δ(1− θ)e(td+tn

L)/τ
) )

(3.14)

Equations 3.12 and 3.14 define a return map which maps tnL onto itself. (Figure 3.3).
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3.2.2.2 Equilibrium time lags

At equilibrium, tn+1
L = tnL = tEL and so, for case A,

(3.15)

θ
(
1 + α + δ(1− θ)e(tEL+td)/τ

)
= (θ + α)

(
1 + δ(1− θ)e(td−tEL)/τ

)
(3.16)

(
θδ(1− θ)etd/τ

)
etEL/τ − α(1− θ)−

(
(θ + α)δ(1− θ)etd/τ

)
e−tEL/τ = 0 (3.17)

θe2tEL/τ − α

δ
e−td/τetEL/τ − (θ + α) = 0 (3.18)

So

tEL = τ ln

[
1
2θ

(
α

δ
e−td/τ +

[(α

δ
e−td/τ

)2

+ 4θ(θ + α)
] 1

2
)]

(3.19)

tEL has a minimum of zero at α = 0, increases monotonically with α and decreases monotonically with δ,
with θ and with td, i.e.: increasing the difference in inputs increases the equilibrium lag time; increasing
the ‘synaptic strength’ and ‘synaptic time delay’ decrease the lag; making the cell response more linear
decreases the lag.

For case B:

tEL = τ ln

[
1
2θ

(
α

δ
e−td/τ + δ(1− θ)etd/τ +

[(α

δ
e−td/τ + δ(1− θ)etd/τ

)2

+ 4θ(1 + α)
] 1

2
)]

(3.20)

In this regime, tEL is non-zero at α = 0, increases monotonically with α and 1/θ, as for case A, but now tEL
has a minimum in δ and in td. In the equal inputs limit (α = 0), case A corresponds to the synchronous
solution and case B to the anti-synchronous solution found by van Vreeswijk and Abbott [146] for fast
synapses.

3.2.2.3 Stability of phase-locked solutions

To show that the equilibria derived above are stable it is sufficient to show that

dtn+1
L

dtnL
< 1 (3.21)

for each section of the return map. For case A, equation 3.12 may be re-written as

z = y + ln
(

J + e−y

K + ey

)
+ c (3.22)

where y = tnL/τ , z = tn+1
L /τ , J = e−td/τ/(δ(1 − θ)), K = (1 + α)e−td/τ/(δ(1 − θ)) and c = ln(1 + α/θ),

and therefore

dtn+1
L

dtnL
=

dz

dy

= 1−
(

e−y

J + e−y
+

ey

K + ey

)
< 1 (3.23)

since J,K > 0 by the definitions of α, δ and td to be positive or zero and the definition that 0 < θ < 1.
The proof proceeds similarly for case B.
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Figure 3.4: Time lags and firing periods for A and B types of 1:1 firing as functions of α, illustrating the thresholds
for these firing types. Parameters: θ = 0.2, δ = 0.1, td = 0.3τ .

3.2.2.4 Threshold of 1:1 firing

Figure 3.4 shows tEL as a function of α for θ = 0.2, δ = 0.1 and td = 0.3τ . An equilibrium exists for case
A provided tEL < td and td < T , where

T = τ ln
(

1 + α

θ + α

)
(3.24)

is the natural firing period of Cell 1. An equilibrium exists for case B provided tEL > td and tEL + td < T .
For the case shown in Figure 3.4, both equilibria exist for α < 0.015, while only the case B equilibrium
exists for 0.015<α<0.032. For α > 0.032 it is possible for Cell 1 to fire a second time before ever receiving
an inhibitory pulse from Cell 2, and so 1:1 firing is no longer possible. Figure 3.5 shows transitions from
A-type to B-type and from B-type to non-1:1 firing.

These conditions can be expressed in terms of the parameters α, δ, θ and td as follows:

tE,A
L < td ⇒ α <

θ
(
e2td/τ − 1

)
1 + 1

δ

(3.25)

td < T ⇒ α <
1− θe2td/τ

e2td/τ − 1
(3.26)

tE,B
L + td < T ⇒ α <

δ + θ

1 + δe2td/τ
− δ(1− θ)− 2θ

+
[(

δ + θ

1 + δe2td/τ
− δ(1− θ)− 2θ

)2

(3.27)

+4δθ
(
1− e2td/τ (δ(1− θ) + θ)

)] 1
2

Figure 3.6 shows the threshold values of α as functions of δ for A- and B-type firing (θ = 0.2,
td = 0.3τ). B-type firing is favoured by intermediate values of δ and θ, and by small values of td. In
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Figure 3.5: Transitions from Type A firing (A) to Type B firing (B) and from Type B firing (C) to harmonic
locking (D) as α is increased.

contrast the range of α for which A-type firing is stable is increased by increasing all three parameters,
up to the limit imposed by td < T , at which the α-threshold falls off rapidly.

3.2.3 Harmonic (mode) locking

When α is increased past the threshold for 1:1 firing, the possible states of the system are suppression
(see §3.2.4) or harmonic locking. Harmonic locking (or mode locking) is used to describe the state where
Cell 1 fires n1 times and Cell 2 fires n2 times (n1, n2 ∈ Z, n1 > n2 ≥ 1) before returning to the original
phase lag.

We can derive the return maps for 1<n1/n2 <2 in a similar manner to that used for the 1:1 return
map (equations 3.12 and 3.14). The return map is discontinuous with five pieces:

i. tnL < td

ii. tnL > td, tnL + td < T , one inhibitory pulse within Tn
2

iii. tnL > td, tnL + td < T , two inhibitory pulses within Tn
2

iv. tnL > td, tnL + td > T , one inhibitory pulse within Tn
2

v. tnL > td, tnL + td > T , two inhibitory pulses within Tn
2

An example for n1 :n2 = 8:7 is shown in Figure 3.7.
The bifurcation diagrams for the inter-spike intervals T1 and T2 and the time lag tnL as functions of

α (Figures 3.8, 3.9 and 3.10) clearly show the harmonic-locking. The structure of the locking is more
clearly seen in plots of n2 vs α (Figure 3.11). The fraction n2/n1 is always rational and irreducible and
forms an infinite order Farey sequence. This has the property that between any two terms n2/n1 and
n′2/n′1 there will be a term (n2 + n′2)/(n1 + n′1). I have not proved the Farey sequence is infinite order,
but calculations at finer and finer scales have revealed no upper limit to n1 and n2. The behaviour is
summarised in the following points:
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δ = 0.1, θ = 0.2, td = 0.3τ
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1. States for which n1 and n2 are small cover a larger region of α-space than states for which n1 and
n2 are large (see Figure 3.11C). For example, for the parameters shown in Figure 3.8, the 2:1 firing
state covers a range of ∼ 0.1, while the 12:11 firing state covers only ∼ 0.001.

2. There is a sharp boundary above which n2 = 0 (see §3.2.4 below).

3. The parameter δ reduces the threshold for suppression and increases the effect noted in point 1
above. The parameter θ has an approximately opposing effect.

To express T1, T2 and tnL as a function of α, θ, δ and td is difficult due to the discontinuous nature
of the function. It may be more useful to simply calculate the envelopes within which all possible values
of the inter-spike intervals must lie. This is done in Appendix A and an example of the T2 envelope is
shown in Figure 3.12. Taking the ratio of the mid-points of these envelopes gives an approximation of
n1/n2, which may be useful in relating the spiking model to a firing rate model.

3.2.4 Suppression

For a large enough discrepancy in the drive to the two cells and a large enough inhibitory voltage step,
the firing of the cell with the smaller drive (Cell 2 here) can be completely suppressed (also known as
‘oscillator death’).

To derive the threshold for suppression, we note that if x2 does not increase from x2 = 1−δ to x2 = 1
during time T , Cell 2 will fire at most once (depending on the initial conditions) before being suppressed.

From equation 3.5,

1
1− θ

+
(

1− δ − 1
1− θ

)
e−T/τ < 1 for suppression

1− δ − 1
1− θ

<
−θ(1 + α)

(θ + α)(1− θ)

δ >
θ

θ + α
(3.28)

or α > θ

(
1
δ
− 1
)

(3.29)

independent of td. For δ = 0.1, θ = 0.2 and td = 0.3τ , the suppression threshold (α = 1.8) is 56 times
the threshold of 1:1 firing (α = 0.032). Increasing δ to 0.8 moves the suppression threshold (α = 0.050)
below the 1:1 firing threshold (α = 0.073), so the system goes directly from 1:1 firing to suppression.

3.2.5 Alternative synaptic models

In this section I consider elaborations of the simple ‘synaptic’ scheme analysed so far:

1. Self-inhibition. If Cell 1 fires then both Cells 2 and 1 receive a downward step in membrane potential
after a time td.

2. Linear voltage step. Instead of being constant, the membrane potential step is linearly dependent
on the current membrane potential, i.e. instead of x → x− δ, x → x− δx. This is equivalent to the
effect of the reversal potential in more realistic, conductance-based synaptic models.

Conductance-based synaptic models are considered in the next section. I have derived the forms of T1, T2,
tEL and αthreshold for A- and B-type firing, for the two extensions described above and for the combination
of the two extensions. They are listed in Appendix A together with the results for the original model.

The effect of the extensions to the original synaptic model can be seen in Figure 3.13. Using a
voltage-dependent voltage step rather than a constant step considerably reduces the phase lag for a given
α. Adding self-inhibition produces a small increase in the phase lag. The change in the phase lag in
turn affects the ability of the system to sustain 1:1 firing with large α (Figure 3.14). In summary, no
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Figure 3.8: Bifurcation diagram for the equilibrium inter-spike intervals (ISIs) of Cell 1 (red) and Cell 2 (blue),
as a function of α. Parameters: θ = 0.2, δ = 0.1, td = 0.3τ . When the system is in a state of n1 :n2 = 3:2 firing,
for example, the ISI of Cell 2 has two values and the ISI of Cell 1 has three possible values.
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self-inhibition and a voltage-dependent voltage step increase the range of α within which the system will
fire with 1:1 phase locking.

The threshold for suppression with the voltage-dependent voltage step is the same as for the original
case with a constant step (Equation 3.28) . The threshold for the self-inhibitory case with constant step
is

δ >
θ

α− θ
(
etd/τ − 1

) for α > θ
(
etd/τ − 1

)
(3.30)

Cell 1 cannot suppress Cell 2 if α < θ (exp (td/τ)− 1). The threshold for self-inhibition with variable
voltage step is

δ >
θ

α + θ
(
1− θ(1+α)

1−θ

(
etd/τ − 1

)) for α > 1− θ(1 + α)
1− θ

(
etd/τ − 1

)
(3.31)

The suppression thresholds are plotted in Figure 3.15, for θ = 0.2 and td = 0.3τ . With self-inhibition,
suppression requires a much larger disparity in the inputs to the two cells, and/or a much larger inhibitory
step. Adding a voltage-dependent voltage step reduces these requirements somewhat.

3.2.6 Conductance-based synapses

All the connections considered so far have been instantaneous steps in membrane potential. A more
realistic synaptic model uses a change in membrane conductance with a finite rise and decay time.

It is difficult to repeat the previous analysis for synaptic models with non-zero rise and decay times (e.g.
alpha-function synapse). However, we can gain a qualitative idea of what the effects are likely to be. For
a fast rise and decay (decay much less than the firing period), the solutions will be only a little perturbed
from the instantaneous case if the charge-transfer is normalised to be the same. The largest effect will
be nearest threshold, when the more-spread-out inhibition will not delay firing so much. For fast rise
and slow decay times, there will be a membrane potential change during the current period (the effective
δ), and a steady-state contribution equivalent to increasing θ. This will reduce the thresholds for 1:1
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Figure 3.16: Effect of varying synaptic decay time τs on firing patterns of Cell 1 (bottom) and Cell 2 (top). The
network was simulated for 5000 spikes in Cell 1, and only those inter-spike intervals (measured to a precision of
0.01 ms) that occurred more than 50 times are shown here, to ensure there are no transient effects. Parameters:
θ = 0.2, α = 0.1, ḡs = 20 pS, td = 0.3τ .

locking and produce higher order mode locking (reduce the slope of the function ∆α(n2)). Additionally,
the effect of a synaptic event can carry over into the next period. Since inhibition occurs later during the
period of the faster firing cell, the carry-over will be most pronounced for this cell, which will be slowed
still further. This is likely to work in opposition to the summation effect.

Figure 3.16 shows the bifurcation diagrams for T1 and T2 for synapses with a step-increase in con-
ductance and exponential decay, as functions of τs, the time-constant of the decay. Initially, the firing
period gradually increases, while still retaining harmonic locking at the same ratio. Around τs = 0.3τ
the harmonic ratio begins to increase. At certain values of τs, small-integer harmonic locking is again
stable, but then the size of the integers in the harmonic ratio increases again until the state of the system
is indistinguishable from asynchrony.

Figure 3.17A compares the bifurcation diagram for step changes in membrane potential (with ‘reversal
potential’) to the diagram for a conductance-based model with τs = τ . It is clear that high-order mode
locking occurs for a larger range of α in the large τs case, but Figure 3.17B makes it clear that n1/n2 still
follows a Farey sequence and hence is not asynchronous.

Therefore, finite synaptic decay time, unlike finite rise time [146], does not lead to asynchronous firing,
although high-order harmonic locking may be indistinguishable from asynchrony over a short time-scale.

3.2.7 Reduced biophysical mitral model

I now ask whether the results obtained for the leaky integrate-and-fire model also apply to the biophysical,
reduced mitral cell model (Chapter 2).

I simulated two instances of the four-compartment mitral cell model with the parameters given in
Table 2.3. The synaptic model was an exponential synapse (instantaneous rise time, exponential decay
with time constant τs = 18 ms). The synaptic current is given by:

Is(t) = ḡse−t/τs(V (t)− Es) (3.32)
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where ḡs is the maximum synaptic conductance and Es is the synaptic reversal potential (taken as -70
mV here). The synaptic time delay was 3 ms. There was no self-inhibition.

For ‘small’ ḡs (ḡs . 0.07 µS), the pattern of harmonic locking is similar to that for the LIF model
(compare Figure 3.18 to Figures 3.9 and 3.10). There are some notable differences, however. First, within
regions of p:q locking, the firing periods bifurcate to give 2p:2q locking (the bifurcation arises from the
spike initiation zone alternating between the soma and the glomerular tuft). Second, the bifurcations
do not all have the same character: note the direct change from 7:6 to 6:5 locking at α = 0.079, with
no intermediate higher-order harmonic lockings as are always found for the LIF model. Thirdly, there
appear to be some regions of chaotic firing.

For large ḡs the pattern is qualitatively different (Figure 3.19). Time lags are generally small (< 20
ms), so there is an approximate synchronization but no mode-locking except for a few, narrow regions of
low-order locking. A possible reason is that Cell 2 (the less strongly stimulated cell) is able sometimes
to suppress Cell 1 (see Figure 3.19D), whereas this is not the case for the LIF model.

The transition between these two regions as ḡs is increased is not sharp (Figure 3.20).
Because of the non-linear nature of the biophysical models, it cannot be assumed that the response is

independent of the drive to Cell 2 (in contrast to the LIF system). To test this, the current input to Cell
2 was increased from 0.28 nA to 1.9 nA. For small α, the high-input response was qualitatively similar
to the low-input response (inset to Figure 3.21), but different behaviour – multiple high-order harmonics
co-existing – was seen at large α (main part of Figure 3.21).

In conclusion, the LIF model is a reasonable approximation to the biophysical model for weak coupling
but not for strong coupling. In the weak coupling regime the biophysical model shows precise phase- and
mode-locking. In the strong coupling regime there is no high-order mode locking (the dynamics are
apparently chaotic), but phase lags are small, which can be regarded as approximate synchronization.

3.3 Inhibition via an interneurone

In the olfactory bulb, mitral cells do not inhibit each other directly, but via interneurones. In this section
I compare the effects of direct and interneurone-mediated inhibition.

3.3.1 The model

Like the mitral cells, the interneurone is modelled with a leaky integrate-and-fire model, with membrane
time constant τg. The interneurone receives no constant current input; the only input to the interneurone
is excitatory synaptic input from the mitral cells: when either mitral cell fires, xg (membrane potential
as a fraction of the threshold) is incremented by an amount δg. When the interneurone fires, both x1 and
x2 are decremented by an amount δ. The sum of the synaptic delays from mitral cell–interneurone and
from interneurone–mitral cell is written td. It does not matter how this delay is apportioned between the
two directions.

3.3.2 Perfect integrator

The simplest case is where the firing of either mitral cell is sufficient to fire the interneurone (δg ≥ 1).
This is identical to the two-cell system with self-inhibition described earlier (§3.2.5).

For 0.5 ≥ δg < 1 and the interneurone a ‘perfect integrator’ (τg = ∞), exactly two mitral cell firings
are required to fire the interneurone and produce inhibition. There are two possible states of 1:1 firing:

1. if the firing of Cell 1 causes the interneurone to fire, then

tEL = τ ln
[

θ + α

θ − α
δ e−td/τ

]
(3.33)

There are two conditions for this state to exist and be stable:

θ − α

δ
e−td/τ > 0 and tEL < td (3.34)



54 CHAPTER 3. MITRAL CELL INTERACTIONS

0

200

400

600

0 0.2 0.4 0.6 0.8 1 1.2

In
te

r-
sp

ik
e 

in
te

rv
al

 /m
s

�

 A

-60

-40

-20

0

20

40

60

0 0.2 0.4 0.6 0.8 1 1.2

T
im

e 
la

g 
/m

s

�

 B

-60

-40

-20

0

20

40

60

0.06 0.07 0.08 0.09 0.1

 

α

 C

D
50 mV 

100 ms

Figure 3.18: (A) Bifurcation diagram of inter-spike intervals vs. α for the two-cell model with the four-
compartment reduced mitral cells and weak coupling. For each value of α the model was simulated for 20 s
and the first 5 s discarded to remove transient effects. Synaptic parameters: τs = 18 ms, ḡs = 5× 10−2 µS. (B)
Bifurcation diagram of time lags vs. α. (C) The same model simulated over a shorter rage of α to show fine
detail. (D) An example of 3:2 harmonic locking, for α = 0.18. Upper trace: Cell 2, Lower trace: Cell 1.
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Figure 3.19: (A) Bifurcation diagram of inter-spike interval vs. α for the two-cell model with the four-compartment
reduced mitral cells with strong coupling. For each value of α the model was simulated for 20 s and the first 5
s discarded to remove transient effects. Synaptic parameters: τs = 18 ms, ḡs = 10 × 10−2 µS. (B) Bifurcation
diagram of time lag vs. α. (C) The same model simulated over a shorter rage of α to show fine detail. (D)
Membrane potential traces for α = 0.05. There is no phase locking. cf Figure 3.18C. Upper trace: Cell 2, Lower
trace: Cell 1.
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Figure 3.20: Bifurcation diagram of time lag vs. ḡs for the two-cell model with the four-compartment reduced
mitral cells. For each value of ḡs the model was simulated for 30 s and the first 10 s discarded to eliminate
transient effects. Note the transition to lower-order harmonic locking as ḡs is increased, then the transition to
apparently chaotic firing above ḡs ' 0.07. Parameters: τs = 18 ms, α = 0.1.
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Figure 3.18A. The inset shows a close-up of the low-α region.
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The first condition is satisfied if the second one is, but not vice versa. The second condition gives
a threshold of

α <
θ
(
etd/τ − 1

)
1 + 1

δ

(3.35)

2. if the firing of Cell 2 causes the interneurone to fire, then

tEL = τ ln
[
1
θ

(α

δ
e−td/τ + θ + α

)]
(3.36)

The condition for this state to exist and be stable is

tEL + td < T ′ (3.37)

giving a threshold of

α <
1 + etd/τ (δ(1− θ)− θ)

1/δ + etd/τ
(3.38)

The α-threshold for the second state (Cell 2 fires the interneurone) is always higher than the threshold
for the first state. Where both are stable, initial conditions will determine which state is reached. The
threshold for the three-cell model (with an interneurone) is higher than the threshold for the two-cell
model (direct inhibition) for small θ, large δ and small td.

If δg < 0.5, 1:1 firing is only possible if s, the number of steps required to fire the interneurone, is
even. Figure 3.22 shows the bifurcation diagram for s = 5. The threshold for suppression is raised since
the amount of inhibition received by the mitral cells is reduced. For α & 2, the pattern of harmonic
locking is the same as for the two cell model, except that the ratios n1:n2 are larger, for example the first
three n1:1 regions are 4:1, 9:1 and 14:1 (note these are (s− 1):1, (2s− 1):1 and (3s− 1):1), rather than
1:1, 2:1 and 3:1 for the two-cell model. For α . 2, we still observe harmonic locking, but the slope of the
function ∆α(n2) is smaller than in the region above α & 2, and appears to vary with α. n2/n1 no longer
follows a Farey sequence.

3.3.3 Leaky integrator

The effect of making the interneurone a leaky integrator is that s, the number of mitral spikes needed to
fire the interneurone and produce inhibition, is no longer constant.

In the bifurcation diagram for the leaky interneurone model (Figure 3.23A), at least five regions of
different behaviour may be distinguished:

I ng = 0 n1+n2
ng

= ∞
II ng < n2

n1+n2
ng

≥ smin + 1
III ng = n2

n1+n2
ng

≥ smin + 1
IV ng > n2

n1+n2
ng

≥ smin

V ng > n2
n1+n2

ng
= smin

In Region I there is no interaction between the mitral cells and hence no phase locking. In Regions II
and III phase locking does occur, but the repeat period is large and the range of α for which n:1 locking is
seen is very small. In a larger network, or with noise in the network, it would be very hard to distinguish
this behaviour from Region I. In Regions IV and V, the pattern is like that seen when τg = ∞, which in
turn is similar to the two-cell model.

In summary, the three-cell model, in the general case, switches from no or poor phase locking when
the input to Mitral Cell 1 is small (so that the mitral cell firing rates are low compared to the granule
cell membrane time constant) to good phase locking when the input to Mitral Cell 1 is large. In a larger
network, it might be expected that synchronization/phase-locking would only be seen when the total
input to the network exceeded some threshold.
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Figure 3.22: Bifurcation diagram for T1 and T2 as functions of α for the three-cell system with τg = ∞ and s = 5.
The other parameters are the same as for the two-cell system bifurcation diagram in Figure 3.8.

3.3.4 Biophysical interneurone model

As for the two-cell system, I now ask whether the three-cell system with LIF neurones is a good ap-
proximation to the three-cell system with biophysical mitral cells and a biophysical interneurone (the
three-compartment granule cell model). The excitatory synaptic current in the granule cell is given by:

IE(t) = ḡEe−t/τE(Vg(t)− EE) (3.39)

and the inhibitory synaptic current in the mitral cells by:

II(t) = ḡIe−t/τI(Vm(t)− EI) (3.40)

where ḡE, ḡI are the maximum synaptic conductances; τE, τI are time constants; Vg and Vm are the
membrane potentials of the granule and mitral cells respectively; and EE, EI are the synaptic reversal
potentials. The values of the fixed parameters are: τE = 5.5 ms, τI = 18 ms, EE = 0 mV, EI = −70 mV.
The time delay of the excitatory synapse was set to zero; the delay of the inhibitory synapses was 3 ms.

If ḡE is large enough, then the firing of either mitral cell will be sufficient to fire the granule cell
(compare to δg ≥ 1 for the LIF system), and the system should behave like two directly-coupled mitral
cells. With ḡE = 8 × 10−3 µS and ḡI = 0.05 µS, this expectation is borne out for α . 1 (compare
Figures 3.18 and 3.24). Above this level the similarity breaks down: the three-cell system now exhibits
non-periodic behaviour, although the bifurcation diagram for inter-spike intervals suggests ‘almost-mode-
locked’ behaviour in which the inter-spike interval has preferred values, but the sequence of values is not
repeated. The model was simulated for 10 seconds with the parameters used for Figure 3.24D (40 spikes
in Cell 2) but no repeat was seen. The bifurcation diagram for time lag vs. ḡI (Figure 3.25), with small
α, shows considerable similarity to the same diagram for the two-cell system (Figure 3.20), except that
the breakdown of mode-locking at high ḡs is not seen at high ḡI.

With larger ḡI, the behaviour is more like the LIF system (Figure 3.26A) with well-defined mode-
locking and suppression. Increasing the drive to Mitral Cell 2 (Figure 3.26B) has an effect similar to
that of increasing δ or decreasing θ in the two-cell, LIF model – the size of the regions of small-integer
mode-locking are increased.
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Figure 3.23: (A) Bifurcation diagram for n2 as a function of α for the three-cell model with a leaky integrator
interneurone. θ = 0.2, δ = 0.1, td/τ = 0.3, δg = 0.4, τg/τ = 0.8. Regions I to V are explained in the text. (B)
Firing rate as a function of α for the three cells. (C) Ratio of summed mitral cell spikes to interneurone spikes.
This is equivalent to the average value of s, the number of mitral cell spikes needed to fire the interneurone.
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Figure 3.24: Three-cell, biophysical model with large ḡE: (A) Bifurcation diagram of inter-spike intervals vs. α.
For each value of α the model was simulated for 20 s and the first 5 s discarded to remove transient effects.
Synaptic parameters: ḡI = 5 × 10−2 µS, ḡE = 8 × 10−3 µS. (B) Bifurcation diagram of time lags vs. α. (C)
Membrane potential traces for α = 0.88 showing 3:1 mode-locking. Upper trace (green): Granule cell; Middle
trace (blue): Mitral Cell 2; Lower trace (red): Mitral Cell 1. (D) Membrane potential traces for α = 1.3 – locking
is not seen.
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Figure 3.25: Three-cell, biophysical model with large ḡE: Bifurcation diagram of time lags vs. ḡI. For each value
of ḡI the model was simulated for 20 s and the first 5 s discarded to remove transient effects. Parameters: α = 0.1,
ḡE = 8× 10−3 µS.

If ḡE is reduced, multiple mitral cell spikes are required to cause the granule cell to fire. The bifurcation
diagrams for ḡE = 1.6× 10−3 µS are shown in Figure 3.27. The region stimulated appears to correspond
to Region II in Figure 3.23: the firing rate of Mitral Cell 2 is approximately constant; the firing rate of
the granule cell is below that of Mitral Cell 2. Increasing α further will not move the response into Region
III, since the biophysical mitral cell model, unlike the LIF model, has an upper limit of firing frequency.
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Figure 3.26: Three-cell, biophysical model with large ḡE and large ḡI: (A) Bifurcation diagram of inter-spike
intervals vs. α. For each value of α the model was simulated for 20 s and the first 5 s discarded to remove
transient effects. Synaptic parameters: ḡI = 9 × 10−2 µS, ḡE = 8 × 10−3 µS. (B) same as (A), but with larger
driving current (1.9 nA to Cell 2 compared to 0.28 nA in (A)).
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Figure 3.27: Three-cell, biophysical model with small ḡE: (A) Bifurcation diagram of inter-spike intervals vs.
α. For each value of α the model was simulated for 20 s and the first 5 s discarded to remove transient effects.
Synaptic parameters: ḡI = 5 × 10−2 µS, ḡE = 1.6 × 10−3 µS. (B) Bifurcation diagram of time lags vs. α. (C)
Membrane potential traces for α = 5.0 showing 4:1 mode-locking. Upper trace (green): Granule cell; Middle trace
(blue): Mitral Cell 2; Lower trace (red): Mitral Cell 1. (D) Membrane potential traces for α = 20.0 – no locking.
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3.4 Discussion

In this first part of this chapter I have used mathematical analysis and computer simulation to study the
properties of pairwise mitral cell interactions. I have proven the existence and stability of phase-locked
solutions in a two-cell system with reciprocal, inhibitory connections based on instantaneous voltage
steps, and have derived expressions for the equilibrium time lag between the cells, and for the limit of
input heterogeneity beyond which 1:1 phase locking breaks down. I have studied the region of harmonic
or mode locking in more detail than has been done previously [27], and derived an expression for the
minimum-maximum inter-spike interval envelope, which allows an approximation of the spiking model
in terms of a firing-rate model. I have shown by simulation that modelling the connections with more
realistic, conductance-based synapses with instantaneous rise but finite decay time does not qualitatively
affect the system behaviour – the same harmonic locking sequence structure is seen. Finally, I have shown
that the integrate-and-fire model is a reasonable approximation to the biophysical, reduced mitral cell
model for synaptic conductances below an approximate threshold, but not above this threshold.

In the second part of this chapter I have studied the more biologically realistic system of two mitral
cells interacting via an interneurone. For this system, analytical solutions are much more difficult except
for a few simple cases. Phase-locking is less robust for the three-cell than for the two cell system. (I define
‘robust’ phase-locking to mean that 1:1 and other low-order mode-locked solutions cover large ranges of
α: the slope of the graph of ∆α(n2) is steep (see Figure 3.11C)). In general, for robust phase-locking
to occur in the three-cell system requires that the interneurone fires faster than the slower-firing mitral
cell. This in turn requires either a large disparity in the inputs to the two mitral cells (large α), or
large maximum synaptic conductances. The system with biophysical neurone models shows qualitatively
similar behaviour to the system with LIF neurones, but as for the two-cell system, the behaviour is more
complex and apparently chaotic behaviour is often seen.

Most previous reports on analytical treatments of spike synchronization/phase locking in pulse-coupled
networks with inhibitory connections focus on homogeneous networks [146, 46] (i.e. all the cells in the
network receive identical inputs, and all synaptic weights are the same). Van Vreeswijk, Abbott and
Ermentrout [146] considered two cells with inhibitory, zero-delay synaptic connections, and receiving
identical, constant inputs. For integrate-and-fire models with general coupling, and for the Hodgkin-
Huxley model with weak coupling (allowing a phase-coupled model description), they prove that for
slow synapses only the synchronous state is stable, while for fast synapses both synchronous and anti-
synchronous states are stable. Gerstner, van Hemmen and Cowan [46] present a ‘unifying framework’
for the results of van Vreeswijk et al and for other reports on synchronization of pulse-coupled oscilla-
tors. They consider a spatially homogeneous network of neurons, and use the spike response model (a
generalisation of the integrate-and-fire model) to prove the following ‘locking theorem’:

‘In a spatially homogeneous network of spiking neurons with standard dynamics, a neces-
sary and, in the limit of a large number n of presynaptic neurons (n → ∞), also sufficient
condition for a coherent oscillation to be asymptotically stable is that firing occurs when the
postsynaptic potential arising from all previous spikes is increasing in time.’

They apply this theorem using a geometric method to construct and determine the stability of a coherent
oscillation. For purely inhibitory synapses, their conclusion is that coherent oscillations are always stable,
provided the delay is less than some upper bound.

Chow [27] generalises the results of Gerstner et al to the case of weak heterogeneity in the inputs
to the neurons. For a network of neurons with all-to-all coupling, coherent oscillations are stable with
weak-enough heterogeneity if the corresponding state in the homogeneous case is also stable, e.g. if
the homogeneous case has synchronous and anti-synchronous states, the heterogeneous state has near-
synchronous (constant phase difference near to zero) and near-anti-synchronous (constant phase-difference
near to 1/2) states. When phase-locking is broken by increasing heterogeneity, the possible states are
asynchrony, harmonic locking and suppression.

There has been very little detailed consideration of the effects of strong heterogeneity, i.e. of the states
that arise when 1:1 phase-locking is broken. Coombes and Bressloff [31] have analysed a system of two
synaptically-coupled integrate-and-fire neurones and show that mode-locked states can exist. They derive
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a set of integral equations that may be solved to obtain the phases and the repeat period. Their analysis
focuses on a system with mixed excitatory and inhibitory coupling and in the limit of weak coupling, and
so is of limited relevance to the system I consider with purely inhibitory coupling and strong synaptic
coupling.

The bifurcation sequences of the inter-spike intervals and time lags (see Figure 3.8, for example),
which are related to the Farey sequence, are very similar to those seen in studies of periodically stimulated
integrate-and-fire neurones [30], which is unsurprising since the cells in the two-cell system receive almost-
periodic stimulation.

As far as I am aware, there are no published analyses of systems in which inhibition is mediated via
an interneurone.

In summary, indirect inhibition produces phase/mode-locking as does direct inhibition, but in general
the regions of 1:1 or low-order locking are smaller, and the system may be in one of several qualitatively
different regimes depending on the input disparity. We may ask then why, if synchronization is important
in olfactory processing, biological olfactory systems use interneurones to mediate inhibition, rather than
the more effective solution of having mitral cells inhibit one another directly? This question has a
number of possible answers. One is to conclude that synchronization is not functionally important
in olfactory processing. Another is to invoke Dale’s Principle [134] – the mitral cell must release the
same neurotransmitter at all its synapses, and since it must be excitatory at the axon terminal, it
must be excitatory at the dendrodendritic synapses. A third answer is that mediating inhibition via
an interneurone allows modulation of the inhibition by other cortical areas, and this outweighs the
disadvantage of indirect inhibition. A fourth answer is that interneurone-mediated inhibition has some
advantage in large networks which is not apparent in the two-mitral cell system. All these answers, except
possibly the first, are plausible. The possibility of an advantage in large networks seems particularly likely
considering the large excess of granule over mitral cells.

To assess the value of this work for studying ‘real’ mitral-granule cell interactions we must consider
the realism of the models. This chapter has shown that the details of the single cell models are not
critical; however, the details of the synaptic models are more important. The synaptic models used in
this chapter are simple: either instantaneous voltage steps or instantaneous conductance steps with fast
exponential decay. At the mitral–granule cell synapse in the olfactory bulb the NMDA receptor, which
has a long time constant, plays an important role [63, 125]. The presence of the NMDA receptor could
oppose or promote robust phase-locking. As Figure 3.16 shows, longer synaptic decay times generally
lead to less robust phase-locking. On the other hand, it is conceivable that NMDA receptor currents
summate over time to produce a general increase in granule cell excitability and hence faster firing, with
the fast AMPA receptor currents controlling the precise timing of granule cell firing. It has been shown in
this chapter that faster interneurone firing leads to more robust phase-locking and therefore the NMDA
receptor could promote robust phase-locking. Further work to resolve this question is required.

It is easy to conceive how 1:1 and n:1 phase-locking might be useful computationally for a neural
system, for example in binding signals from different receptors into a single representation. Whether
more general phase-locking modes could be useful is questionable, since in general the spikes of different
cells would not occur close together in time. Furthermore, harmonic locking would surely be difficult to
obtain, or even to recognize in experimental recordings, in larger networks than two cells. The presence
of noise in the network activity would tend to make high-order harmonic locking indistinguishable from
asynchrony.

If temporal features such as synchronization are not used in olfactory computation, and only the
average rate of firing is important, then the tendency of mutually inhibitory elements to phase lock will
tend to quantize the mitral cell firing rates. This may have some value in rejecting noise, but could also
reduce the information carrying capacity of the system.

It is difficult to extrapolate results from the simple system of two interacting mitral cells to a large
network of mitral and granule cells. The existence and properties of synchronization and phase-locking
in large networks are investigated, by simulation, in the next chapter.





Chapter 4

An olfactory bulb network model

4.1 Introduction

Having developed reduced, biophysical models of olfactory bulb neurones (Chapter 2) and studied the
interactions of these neurones in minimal networks of two or three cells (Chapter 3), the next step is to
develop a large network model with hundreds or thousands of neurones, which can begin to approach the
complexity of the real bulb.

The strategy for modelling is to use a level of detail such that the number of unknown parameters
is as small as possible. As discussed in Chapter 2, the single cell models were simplified from detailed
compartmental models [11] which had been fitted to experimental data. The amplitudes, time constants
and transmission delays of the synapses are also obtained from the literature. Some experimental data
about the statistics of connections between neurones in the bulb is available. The problem is that
available computational power is not sufficient to simulate a network with as many neurones as the
real bulb, and once the size of the network is reduced the connection statistics are changed. A simple
method for specifying the synaptic connections is therefore adopted, and the effects of varying connection
statistics can be investigated by simulation experiments. Modelling electrical stimulation of the bulb is
straightforward. Modelling odour stimulation is difficult, as the relationship between odorant identity
and the spatio-temporal pattern of inputs to the bulb is only partially understood (see §1.1.3 and §1.1.4).
A simple model of olfactory inputs is therefore used, which captures some qualitative aspects of odour
inputs but which is not necessarily quantitatively accurate.

As a test of the model, a series of simulation experiments with electrical stimulation were performed
and the results compared to published experimental data which were not used in developing the model
(§4.4). This gives confidence that the model is capturing some features of network interactions in the
real olfactory bulb.

Simulation experiments with ‘odour’ stimulation were then performed to investigate (i) how the model
response (in terms of phase-locking/synchronization and the spatial distribution of activity) is affected
by stimulus intensity, (ii) how the response depends on connectivity parameters and (iii) whether the
network makes it easier to discriminate between similar odour inputs.

4.2 Description of the model

4.2.1 Cells

The neurone types that have been described in the olfactory bulb are mitral cells, tufted cells, periglomeru-
lar cells, granule cells and short-axon cells (see §1.1.1). The decision as to which of these cell types should
be included in a model is based primarily on the contribution each is thought to make to the network
behaviours of interest (i.e. a cell type which makes a large contribution must be included, while one
which makes a minor contribution may be excluded), secondarily on the information that is available
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about each cell type (i.e. little is gained by including a poorly characterised cell type in the model). In
summary, there must be a trade-off between completeness and simplicity.

The mitral/tufted cells and the granule cells are thought to form the fundamental circuit of the
olfactory bulb. Detailed models of these cell types have been published [11], and in Chapter 2 I have
simplified these detailed models so they are fast enough to be used in large networks. Therefore these
cell types have been included in the model.

The short-axon cells are present in very small numbers compared to the other cell types, which
suggests that their role in the processing carried out by the bulb may be small, and almost nothing is
known about their physiology; therefore I have not included these cells in the model.

The decision whether or not to include periglomerular neurones is difficult. The population of
periglomerular cells is large and their synaptic connections are fairly well understood. Less is known
about the physiology of these cells than about mitral and granule cells, although there have been recent
measurements of sodium and potassium channel kinetics in frogs [6, 7] and rats [116, 117]. Detailed re-
constructions of the cell morphology for compartmental modelling have not been made. In evolutionary
terms, periglomerular cells appeared late [38] – they are not present at all in fish and are most numerous
in mammals. This suggests that PG cells provide a refinement of the bulb’s fundamental computations,
which are performed by the mitral/tufted–granule cell system. On balance, I have decided not to include
PG cells in this model, although future extensions of the model could include these cells.

Is it necessary to model mitral and tufted cells separately? Both types are output neurones and
have similar morphology – glomerular tuft and extensive lateral dendrites – but there are also many
differences between them: in size, in orthodromic response properties [42, 124], in axonal projection
patterns to central olfactory areas, in the distribution of secondary dendrites [94, 106] and of local axon
collaterals [70]. Moreover there is a functional separation of sub-layers [70], with less communication
between the mitral and tufted cell populations than within them. I conclude that tufted cells need not
be modelled explicitly to gain basic insights into olfactory bulb function, although they must be included
as the model is developed and we gain a fuller picture.

In summary, the cell models used are the four-compartment mitral cell model and the three-compartment
granule cell model developed in Chapter 2.

4.2.2 Synapses

4.2.2.1 Which synapses to include

Within the glomerulus Since periglomerular cells are not included in this model, the only intra-
glomerular synapses are the ORN–mitral cell synapses. For simplicity, sensory inputs to the mitral cells
are modelled as constant currents rather than with a synaptic model. This simplification proved to be
reasonably accurate for a single mitral cell model (see Chapter 2).

Dendrodendritic mitral–granule cell synapses As discussed in §1.1.1, mitral/ tufted cells have
GABAA receptors and granule cells have both NMDA and AMPA/kainate receptors at the dendroden-
dritic synapses in the EPL. There is a consensus that these synapses are fundamental to the function of
the bulb [119, 135, 158], so they must be included in any model.

Mitral cell autoexcitation Immunocytochemical studies have demonstrated the presence of NMDA[109]
and metabotropic (mGluR1α) [145] glutamate receptors on mitral cell secondary dendrites. This sug-
gests that mitral cells can produce self-excitation, and this has been demonstrated physiologically for
both the metabotropic [145] and NMDA receptors [62]. The NMDA-current is much smaller than the
GABA-mediated inhibitory current. The metabotropic receptor has been shown to produce increases in
intracellular calcium [145], but its effect on membrane potential appears to be negligible compared to
that of the NMDA receptor [62]. It is possible that activation of the metabotropic receptor is associated
with longer-term processes such as synaptic plasticity, rather than short-term processing.

Further, paired recordings from neighbouring mitral cells have demonstrated that glutamate diffusion
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can produce weak, short-range mitral-mitral cell excitatory coupling (lateral excitation about 1.5% of self-
excitation) [62]. It has been suggested that this could promote synchronization of mitral cell firing [62].

Mitral cell auto- and lateral-excitation have not been included in this model because of the small size
of the currents compared to the GABAA current and because of the lack of experimental data on mitral
cell NMDA and metabotropic glutamate receptors.

Granule to granule cell synapses It has been demonstrated that granule cells receive GABAergic
synaptic input [152]. However, the identity of the presynaptic cells is not known – they could be other
interneurones, centrifugal fibres and/or other granule cells.

There is morphological evidence for gap junctions between clusters of granule cells [120]. If these
junctions represent functional electrical synapses, this would tend to synchronize granule cell firing. I
have not modelled gap junctions, but one consequence of synchronization is that close neighbours would
fire as a single cell, and so the effect could be approximated by reducing the ratio of granule:mitral cells.

Mitral/tufted cell axon collaterals Although mitral and tufted cell axon collaterals terminate
in the granule cell layer [70], very little is known about their physiological effect, so I have not included
them here.

4.2.2.2 Synaptic models

In a large network model with many thousands of synapses, the model of a single synapse must inevitably
be highly simplified. For the fast synapses in this model (AMPA and GABAA), an action potential in
the presynaptic compartment at time t0 (detected by a simple threshold-crossing method) produces a
step change in the post-synaptic conductance, after a time delay td to account for transmitter release
and diffusion, which then decays exponentially. The postsynaptic currents are given by:

IAMPA(V, t) = ḡAMPAe−t′/τAMPA(V (t)− EE) t′ > 0 (4.1)

and

IGABAA(V, t) = ḡGABAAe−t′/τGABAA (V (t)− EI) t′ > 0 (4.2)

where t′ = t−t0−td, ḡAMPA and ḡGABAA are the maximal conductances for the AMPA and GABAAsynapses,
EE and EI are the reversal potentials for the excitatory and inhibitory synapses respectively, and V (t) is
the postsynaptic membrane potential. td is different for the mitral–granule and granule–mitral directions.
For the AMPA and NMDA synapses, td = tEd and for the GABAA synapses, td = tId.

For the NMDA receptor, the rise time is too long to be modelled by an instantaneous change in
conductance. Therefore I use the simple, but computationally efficient, model described by Destexhe et
al [34, 35]. A presynaptic action potential produces a pulse of neurotransmitter of constant concentration,
duration tdur, at the postsynaptic site. The postsynaptic response is modelled with a two-state kinetic
model. The constant neurotransmitter concentration allows the kinetic equation to be solved analytically,
giving:

INMDA(V, t, [Mg]) = ḡNMDAB(V, [Mg])r(t′)(V (t)− EE) (4.3)

where

r(t′) =

{
(1− e−t′/τα

NMDA) 0 < t′ < tdur

r(tdur)e−(t′−tdur)/τβ
NMDA t′ > tdur

(4.4)

where ḡNMDA is the maximal NMDA conductance, τα
NMDA and τβ

NMDA are the time constants for the rise
and decay phases respectively, [Mg] is the extracellular Mg2+concentration, B(V, [Mg]) is the voltage-
dependent magnesium block, and all other parameters are as previously defined. The magnesium block
is taken from Jahr and Stevens [64]:

B(V, [Mg]) =
1

1 + e−0.062V [Mg]
3.57

(4.5)
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ḡAMPA 1.0 nS ḡNMDA 0.593 nS
ḡGABAA 0.6 nS τAMPA 5.5 ms
τα
NMDA 52 ms τβ

NMDA 343 ms
τGABAA 18 ms tdur 30 ms

tEd 1.8 ms tId 0.6 ms
[Mg2+] 1.0 mm ENa 45 mV
ECa 70 mV EK -70 mV
EE 0 mV EI -70 mV

Table 4.1: Summary of network model parameters

A second spike which arrives during the rise time tdur extends tdur rather than adding to the conductance.
Otherwise, multiple inputs summate. Full details of this are given in reference [35].

4.2.2.3 Synaptic parameters

Values of the maximal conductances and synaptic time constants are obtained from the literature:

Excitatory synapses The rise time of the fast component is very short [125]. For simplicity it is
taken to be zero, and the AMPA component is described by an instantaneous rise and exponential decay.
The decay time constant of the fast component of the EPSC has been measured as 5.5±1.2 ms [125]; The
rise time of the NMDA current is about 30 ms with a rise time constant of τα

NMDA = 52 ± 10 ms [125].
The decay time constant, τβ

NMDA = 343± 48 ms [125].
The peak of the fast (AMPA) component of the EPSC recorded in granule cells is approximately 60

pA [63, 125]. Assuming a driving force of about 60 mV gives ḡAMPA = 1 × 10−3µS per synapse. The
peak amplitude of the NMDA current is 0.26± 0.05 times that of the AMPA current in magnesium-free
conditions [125], giving gpeak

NMDA = 2.6 × 10−4µS, but due to the non-zero rise time, this is not the same
as ḡNMDA:

ḡNMDA =
gpeak
NMDA

1− e−tdur/τα
NMDA

(4.6)

from eq. 4.4, which gives ḡNMDA = 5.9× 10−4 µS.
A summary of the parameters is given in Table 4.1.

Inhibitory synapses Unitary inhibitory post-synaptic currents (IPSCs) recorded in mitral cells
have a peak amplitude of about 40 pA, and decay time constant of 18±1 ms [125], with the chloride reversal
potential maintained near 0 mV and the holding potential at -70 mV. This gives ḡGABAA = 6× 10−4µS
per synapse. The rise time is about 4 ms [125] and as for the AMPA synapse an instantaneous rise is
used.

Synaptic time delays The ideal way to determine the synaptic time delays is to record simulta-
neously from mitral and granule cells and measure the time between a mitral cell spike and the onset of
the EPSP in the granule cell, and the time between a granule cell spike and the onset of the IPSP in
the mitral cell. To my knowledge, such a recording has not been carried out, so we must rely on more
indirect data. Mori and Takagi [98] measured the time between the arrival of an antidromic spike at the
mitral cell soma (inferred from field potential recordings) and the onset of an EPSP in a granule cell
(from intracellular recording), obtaining a value of 1.8 ± 0.3 ms (mean ± standard deviation, n = 23).
This time delay includes the conduction time from the soma along the secondary dendrite to the synapse,
but this is appropriate for the model, since the spike time is measured at the soma. The time between
the arrival of the antidromic spike and the onset of an IPSP in mitral cells was 2.4 ± 0.4 ms (n = 102),
giving a time delay for the granule–mitral synapse of at most 0.6 ms.

The synaptic parameters are summarised in Table 4.1.
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Figure 4.1: The mitral (large circles) and granule (small circles) cell arrays. Connections between cells can wrap
round from one side of the array to the opposite side.

4.2.3 Connections

4.2.3.1 Connection statistics

The pattern of connections within a neural system can strongly influence its function. This presents a
major challenge to modelling, since many connectivity parameters are not known and may change with
the size of the network that is modelled.

Important factors include the size (both number of cells and spatial extent) and shape of the network,
the number of synapses per cell, and the frequency of synapses as a function of distance and direction
from the cell soma. These determine the degree of interaction between any two cells, i.e. how many
synapses there are in the shortest path between two cells, or, more comprehensively, the distribution of
path lengths between any two cells.

Topology of the network As the olfactory bulb is laminar, it is natural to describe it by a two-
dimensional network. To represent the actual shape of the OB the network topology should be defined
by the surface of some ellipsoid. A planar network, however, makes calculation of location and distance
much easier. Therefore the mitral and granule cells are arranged in square arrays of equal ‘physical’ size
(although there are more granule cells than mitral cells, the distance between granule cells is less than the
distance between mitral cells), as shown in Figure 4.1. Edge effects are dealt with by using wrap-round
connections in both dimensions.

Number of connections The number of synapses per mitral cell, nsyn, has not been experimentally
determined. However, it can be estimated from other measurements. The number of synapses in the
EPL of adult mice has been estimated by electron microscopy as (1.1 ± 0.3) × 109 [111]. It is unclear
whether this estimate is of reciprocal synapses or of individual synapses (a reciprocal synapse consists
of an excitatory-inhibitory pair). In the latter case, the number of reciprocal synapses will be half
the above estimate. An indirect estimate gives a very similar result: the number of spines on the
peripheral dendrites of a single granule cell has been measured as 144–297 in mice [156] and 158–420
in rabbits [94]. Assuming 200 spines per cell and one reciprocal synapse per spine, taking the number
of mitral cells per mouse OB as 38400 [121] and the ratio of granule:mitral cells as 150 [133], then
the number of synapses in the EPL = 200× 38400× 150 = 1.15× 109.

Assuming a constant density of synapses on mitral/tufted cell dendrites, it would be expected that
mitral cells, which are larger, would have more synapses than tufted cells. The total secondary dendrite
lengths for mitral and middle tufted cells have been measured as 15016 µm and 4050 µm respectively [94].
Therefore, taking the ratio of tufted:mitral cells as 2.5 [133],

Synaptic density =
1.1× 109

38400 (15016 + 2.5× 4050)
' 1.14 µm−1 (4.7)

so the number of synapses per mitral cell is approximately 1.14 × 15016 = 17000 and the number per
tufted cell is 4600.
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These calculations assume that all synapses involve a mitral/tufted cell, and so they ignore centrifugal
inputs onto interneurones in the EPL. Therefore these are probably slight overestimates.

Distribution of connections There are a number of ways to specify the connections between cells
in a model. The only practical ones assume that connections are formed randomly, dependent only on the
relative positions of the two cells, and not on the individual identity of the cell, or on the other connections
of the cell. In fact, use-dependent formation and pruning of synapses during development is likely to
result in just such non-random connectivity, but we do not currently have any information which would
allow connections to be specified in this way. One method for specifying connections in a semi-random
fashion is to randomly generate a dendritic morphology for each cell based on statistical data (from [94],
for example), and then to generate a synapse whenever two dendrites come within a certain distance
of one another. This method can potentially capture the connectivity rather accurately, in a statistical
sense, but is rather computationally intensive. A simpler method is to suppose that each mitral cell has
a probability density field p(r, φ) (polar coordinates in the plane of the secondary dendrites), such that
the probability of forming a synaptic connection within a region of size rδrδφ at point (r, φ) is

P (r, φ) = p(r, φ)rδrδφ (4.8)

The identity of the granule cell to which the connection is made could also be determined by such a
probabilistic method. However, since the radius of the granule cell dendritic field is much smaller than
that of the mitral cell, it is simplest to make the connection to the granule cell whose soma is nearest to
the point (r, φ).

I make the simplifying assumption that the probability of a mitral cell forming a synapse at a point
depends only on the radial distance of the point from the soma, and not on the direction, i.e.

p(r, φ) = p(r) (4.9)

This is an approximation, since of course synapses must occur on dendrites, and these project in def-
inite directions from the cell. However, the dendrites branch copiously, so the approximation appears
reasonable.

What is p(r)? First, I assume that synapses are approximately evenly spaced along the dendrites. If
the dendrites have no branches, then p(r) ∝ 1/r (i.e. the average number of synapses at any given radial
distance is constant, so the density of synapses declines with distance). If the dendrites branch copiously
such that dendritic density is constant within the arbour, then p(r) = constant. In practice, p(r) is likely
to lie somewhere within these limits. For any single cell, p(r) will have a discontinuity at each branch
point, but these can be smoothed out by taking an ensemble average from many cells. For simplicity I
have used p(r) ∝ 1/r in all the simulations shown in this chapter, but it would be of interest in future to
examine the effect of the p(r) distribution on the network behaviour.

In summary, the connections are specified as follows: The number of synapses per mitral cell is fixed.
For each synapse, a direction φ and radius r are chosen at random from uniform distributions, and a
connection made to the granule cell whose soma is located closest to the point (r,φ). Therefore the
number of synapses per granule cell is not constant, but follows some distribution.

Calculation of connectivity parameters We require some metric to quantify the connection
statistics of the real and the modelled olfactory bulb. The two metrics I have chosen to use are:

1. the proportion of the granule cells within its arbour to which a mitral cell is connected – the
‘connection fraction’;

2. the fraction of the granule cells connected to one mitral cell which are also connected to any other
given, neighbouring, mitral cell – the ‘mutual connection fraction’.

These are obviously related, and together give some idea of the degree of communication between different
elements of the network. These have the advantage that they are easy to calculate. I have not considered
more sophisticated metrics such as the fraction of mutual connections as a function of the distance
between two cells (not only for neighbouring cells).
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4.2.3.2 The scaling problem

Simulating large, highly connected networks in which the individual elements are themselves complex is
extremely computationally intensive. To simulate a model of a mammalian olfactory bulb with the same
number of cells and connections as the real bulb may just be possible on today’s supercomputers; it is
certainly not possible on anything less powerful. Therefore it is desirable to simulate smaller networks
and to infer the behaviour of the full-scale network from the behaviour of the smaller simulations.

In principle there are two ways to shrink a network: it can be made smaller in extent or be made more
sparse. A smaller network, which may represent a sub-region of the bulb, has the same connectivity within
the sub-region, but ignores any inputs from outside. Given the very large extent of mitral cell dendrites,
this may have a significant influence on the behaviour. However, with focal electrical stimulation or weak
odour stimulation, only one or a small number of glomeruli are activated, and so only the mitral cells
connected to those few glomeruli, and the granule cells to which they connect, need be simulated. The
other mitral cells receive no input and therefore produce no output and therefore have no influence on the
stimulated mitral cells (this ignores background activity, which could be simulated by a small, constant
drive to the granule cells).

A sparser network does not suffer from edge effects, but will have different connectivity to the full-
scale network: either the number of connections per cell will be reduced or the connection fraction and
mutual connection fraction will be increased.

I have chosen a mixed strategy: both reducing the number of cells and decreasing the network size
relative to the range of connections. A network smaller than the range of the secondary dendrites allows
the number of synapses per mitral cell to be reduced, since many connections will be to granule cells
outside the simulated region.

4.2.4 Input

The input to the olfactory bulb is from two sources: (i) the olfactory nerve (sensory inputs from ORNs or
electrical stimulation of the nerve); (ii) the medial and lateral olfactory tracts (centrifugal inputs/feedback
from higher levels of cortex or electrical stimulation of the tracts).

4.2.4.1 Sensory input

Considering first the sensory input, there are two considerations: the spatial distribution of input inten-
sity; and the temporal structure – the statistics and modulation of the ORN spike train.

Spatial structure In one sense, modelling the spatial distribution of inputs is easy: each ORN-
type projects to one or a pair of glomeruli and each glomerulus receives input from only one ORN-
type [18, 93, 149]. However, any given receptor responds to a broad range of odorants, and any given
odorant activates receptors of more than one type. There is as yet no satisfactory model for this, although
features of the odour molecule such as shape and chemical identity appear to be important [66, 96].
There is some evidence that receptors which respond to chemically-similar odorants project to nearby
glomeruli [45, 61] but it is not established that this arrangement has a functional purpose [76].

I chose to model 10 odour ‘features’ and 36 receptor types/glomeruli (in a 6 × 6 array). Let aij be
the degree of activation of each receptor type j by each odour feature (OF) i (0 ≤ aij ≤ 1). All the aij ’s
form a 10× 36 matrix, A. An odour is then represented by a 10 element vector x. Applying odour x to
the bulb model produces a receptor-activation vector y:

y = Ax (4.10)

This assumes no interaction between odour features at the receptor level and so is a simplification of
the real situation [73]. The current applied to the glomerular compartment of mitral cell j is then
proportional to the element yj of the receptor activation vector. The proportionality includes a scaling
for odour intensity.

There are no good statistical data available which would allow determination of the matrix A. In
developing a procedure to specify A, I adopted the criterion that a large minority of the elements should



74 CHAPTER 4. AN OLFACTORY BULB NETWORK MODEL

be zero (no response), and that a small minority should have strong responses. This criterion is based
on imaging studies of glomerular activation (e.g. [44, 45, 122]). A is generated as follows:

• each element aij is picked independently from a normal distribution with mean 0.0 and variance 0.5.
Then A is transformed as follows: each column vector j of A is mapped onto the two-dimensional
glomerular space to form a matrix Sj. Each element sj

lm of Sj is convolved with a kernele−2
√

2 e−2 e−2
√

2

e−2 e0 e−2

e−2
√

2 e−2 e−2
√

2

 =

0.059 0.135 0.059
0.135 1.000 0.135
0.059 0.135 0.059

 (4.11)

i.e. each element is transformed to a weighted sum of itself and its close neighbours. The elements
are then normalised to be between 0 and 1. The modified Sj is then mapped back onto column
vector j of A. This acts to introduce a dependence between the activations of nearby glomeruli.

Temporal structure The inputs to a given mitral/tufted cell can be modelled as continuous cur-
rents or as spike trains activating synapses. The neurotransmitter released by ON axon terminals is
glutamate [10] and mitral cells have both NMDA and AMPA receptors [41].

The presence of the long-duration NMDA current suggests that a constant-current approximation
may be valid for odour stimulation (see the results in §2.2). On the other hand, odour-elicited field-
potential oscillations in vertebrate olfactory epithelium, which are abolished by tetrodotoxin [37], suggest
that ORN firing may be synchronized, which would invalidate the constant-current approximation. The
stimulus amplitude may be also have periodic modulation due to sniffing or breathing.

For simplicity, I have used the constant-current approximation for odour input.

4.2.4.2 Centrifugal connections

Much less is known about the centrifugal inputs than about the sensory inputs. The origins and neuro-
chemistry of the centrifugal fibres are discussed in Section §1.1.1.

Centrifugal innervation can be divided into two categories: external effects which are not induced by
olfactory input, e.g. the noradrenergic and cholinergic input in ewes, caused by stimulation of the vagina
and cervix during parturition, which leads to the formation of own-lamb-specific olfactory memories [69];
and feedback effects in which an olfactory signal transmitted from bulb to cortex causes centrifugal input.
The ‘external’ inputs are likely to be spatially homogeneous in their effect and to have a global effect –
perhaps changing the system from one state or condition to another, e.g. from a non-learning to a learning
state. The feedback inputs may have local effects, in that feedback could be targeted to the region of the
specific neurones which caused the feedback, or may also have global effects. The time delay for feedback
is unknown. In a single mitral cell recorded by Fischer and Zippel [43], a suppression of firing beginning
2.5 s after odour presentation was abolished by cryogenic blockade of the olfactory tract, suggesting that
some feedback can have time delays of several seconds. The spike latency of piriform cortex neurones
following olfactory bulb electrical stimulation is on average 18 ms [101], so a lower bound for feedback
delay is about 40 ms. In practice it is likely to be longer, since some intra-cortical processing must occur
before the feedback signal is generated. Therefore, just after presentation of a novel stimulus, feedback
can be ignored. Centrifugal inputs can be ignored entirely when considering experiments performed in
bulb slices, since bulbar-cortical connections are not preserved in this preparation.

I have chosen not to include centrifugal inputs in the model at this stage.

4.3 Numerical methods

The model was simulated in Neuron version 4.1 running on a Digital XP1000 workstation under Digital
Unix and in Neuron version 5.0 running on a Dell Precision 330 workstation under Linux. Neuron
allows the use of fixed time step and variable time step integration methods. The fixed time step methods
are backward Euler and Crank-Nicholson. The variable time step method is multi-order, and may be used
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Figure 4.2: The effect of integration parameters on accuracy. (A) Mean absolute error (%) in inter-spike intervals.
See text for details of error calculation. (B) Time taken to integrate for 300 ms. × local variable time step; +
global variable time step; � fixed time step.

globally (the same time step is used for all elements of the model) or locally. In order to determine the
most suitable method, I simulated a small network of 16 mitral cells and 256 granule cells using (a) fully
implicit backward Euler (FIBE), (b) global variable time step (GVTS) and (c) local variable time step
(LVTS). For the FIBE method, the time step (dt) was varied. For the variable time step methods, the
local absolute error tolerance (atol) was varied. The model was simulated for 300 ms with 50 synapses
per mitral cell and the input current for each mitral cell chosen at random from a uniform distribution in
the range 0–2 nA. For each integration method and for each value µ of the integration parameter (atol
or dt), the inter-spike intervals, Tµ

i , were calculated (63 ISIs in total, ranging from 22.2 to 96.5 ms), and
an error value was calculated:

Eµ =
1
63

63∑
i=1

∣∣∣∣Tµ
i − T ν

i

T ν
i

∣∣∣∣ (4.12)

where ν is the smallest value of the integration parameter for each integration method (ν = 10−6 for both
variable time step methods; ν = 0.1 µs for the FIBE method). The time taken to run the simulation was
also recorded. The results for the XP1000 workstation are shown in Figure 4.2. Note that some of the
parameter values were different from those used in the rest of this chapter1 but a partial repeat of these
simulations with both sets of parameters confirmed that the effect on the results is negligible. The LVTS
method always requires a smaller absolute tolerance to achieve the same accuracy as the GVTS method,
but it is faster for all error levels above 0.01%. The FIBE method is slower than the LVTS method for
error levels below about 0.5%.

1EE = 45 mV, ḡNMDA = 0.312 nS and ḡAMPA = 0.6 nS
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The error between the most accurate runs of each method was also calculated as above. Comparing
LVTS with GVTS gave an error of 0.009%, while comparing LVTS with FIBE gave a much larger error
of 1.4%.

For most of the simulations reported in this chapter I have used the LVTS method with atol=0.01.
This gives an error level of about 5%. Some results were checked with atol=10−4.

4.4 Response to olfactory nerve shock

4.4.1 Introduction and Methods

The dendrodendritic reciprocal synapse has a central role in olfactory bulb function, and therefore it is
desirable to test this aspect of the model with reference to experimental results. Schoppa et al [125]
recorded synaptic currents in mitral and granule cells in response to focal electrical stimulation of one
glomerulus, giving a detailed picture of dendrodendritic function. In this experiment the bulb model was
simulated with the same conditions, as far as possible, as used by Schoppa et al.

The somata of mitral cells innervating a single glomerulus are likely to be distributed within a small
area (one study found that 96% of mitral cells connected to the same glomerulus were separated by less
than 120 µm [21]). For simplicity in determining connections, the model assumes that the somata are
located at a single point, and therefore the range of connections can be set to the entire extent of the cell
array.

The size of the mitral cell array was 5×5. To reduce synchronization of cell firing, some heterogeneity
was added to the network by picking ḡNMDA for each cell from a normal distribution with standard
deviation equal to half the mean. This method of adding heterogeneity was chosen arbitrarily to obtain
the desired effect. One mitral cell was voltage clamped at -70 mV with a series resistance of 2 MΩ and the
chloride reversal potential set to 0 mV. All mitral cells were simultaneously stimulated in the glomerular
compartment with a current pulse of amplitude 20 nA and duration 5 ms. The extracellular magnesium
concentration [Mg2+] was set to 0 mm. The model was simulated for 3000 ms using the LVTS method
with absolute tolerance 0.01. Other model parameters are given in Table 4.1 or in the text.

4.4.2 Results

The network model responds to glomerular shock with a single action potential in each mitral cell (Fig-
ure 4.3A) and a train of action potentials in granule cells (e.g. Figure 4.3B). The duration and frequency
of this spike train depends on the number of synaptic inputs each granule cell receives. The granule cell
population response is an initial, synchronized burst followed by unsynchronized firing (Figure 4.3D) with
an exponentially-decaying spike-time histogram (STH) (Figure 4.3E). The prolonged granule-cell firing
produces a long-duration IPSC in the voltage-clamped mitral cell. This IPSC was fitted between 50 and
2000 ms with a single exponential function (time constant 296 ms) and with the sum of two exponentials
(time constants 55 ms and 367 ms). This IPSC is similar in amplitude and time-course to that seen
experimentally by Schoppa et al [125] (Figure 4.3F), except that the model time constant is shorter than
the experimental time constant.

4.4.2.1 Contributions of AMPA and NMDA receptors

In order to separate out the contributions of the AMPA and NMDA receptors to the network response,
the model was simulated with the conductances for these synapses set in turn to zero. The results are
shown in Figure 4.4. It is apparent that the NMDA receptor is needed to generate prolonged spike trains
in the granule cell population (Figure 4.4B,D) and hence to generate prolonged IPSCs in the mitral cells
(Figure 4.4C). The main effect of removing the AMPA current is to increase the rise time of the mitral
cell IPSC. A second effect is to increase the amplitude of the prolonged granule cell population response:
the peak of the baseline spike time histogram is 42 spikes per second while the peak of the no-AMPA
histogram is 67 spikes per second (Figure 4.4D).
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F

Figure 4.3: Glomerular stimulation produces a single spike in all mitral cells (A), and prolonged firing in some
granule cells (B). The overall granule cell response is a brief, synchronized burst, seen in the raster plot (D) and
post-stimulus spike histogram (E), followed by unsynchronized firing which decays exponentially (E). The granule
cells produce a prolonged IPSC in mitral cells (C), which is similar to that seen experimentally (F), although the
decay is faster. Parameters: ngran/nmit = 100; nsyn = 200; [Mg2+] = 0 mm. Figure (F) was reproduced from
reference [125].
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Figure 4.4: The separate contributions of fast AMPA and slow NMDA currents to the granule cell EPSC (A) in
response to glomerular stimulation are clearly seen. While the presence of NMDA receptors alone is sufficient to
produce a prolonged train of action potentials in granule cells (B and D), AMPA-receptors alone produce only
one or two spikes per cell, leading to a greatly-reduced duration of the IPSC in the mitral cells (C). Note that
removing AMPA receptors increases the amplitude of the broad peak in the granule cell population STH (D),
compared to baseline. In (D), * indicates that the bin has been truncated at 100 spikes.
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Increasing nsyn Increasing ngran Increasing nsyn and ngran

Granule cell firing rate ↑ ↓ ↑
IPSC amplitude ↑ ↓ ↑
IPSC decay time ↑ ↓ —
STH amplitude ↑ ↑ ↑
STH decay time ↑ ↓ —

Table 4.2: Summary of the effects of changing network parameters on the model response to a glomerular shock
stimulus. ↑ denotes an increase, ↓ denotes a decrease and — denotes no change in the quantity in the leftmost
column.

4.4.2.2 Effect of [Mg2+]

All the previous simulations were carried out with [Mg2+] = 0 mm. To investigate the effect of magnesium
ion concentration on the model, a number of simulations were performed with varying values of [Mg2+].
Figure 4.5A shows the mitral cell IPSCs for different values of [Mg2+]. The effect of increasing [Mg2+]
is to shorten the prolonged component of the IPSC, with little or no effect on the early component.
The total charge transferred to the mitral cell may be found by integrating the IPSC curve over time.
Figure 4.5B shows the total charge (as a fraction of the total charge at [Mg2+] = 0 mm) as a function
of [Mg2+], for the simulations and for Schoppa et al ’s experimental results. The total charge decreases
exponentially as a function of [Mg2+]. The model is more sensitive to small Mg2+ concentrations than is
the experimental preparation.

4.4.2.3 Extended stimulus

In response to an extended current clamp stimulus (amplitude 2 nA, duration 300 ms) the mitral cells fire
a series of action potentials interspersed with some ‘almost spikes’, when the action potential appears to
be suppressed (Figure 4.6A). Each mitral cell spike produces a burst of granule cell firing (Figure 4.6C),
which in turn leads to pulsed inhibition of the mitral cells (Figure 4.6B).

4.4.2.4 Influence of network connectivity

The easily-characterised response to glomerular shock provides a good opportunity to examine the effects
of changing network connectivity parameters. The number of mitral cells, nmit, was fixed throughout.
The number of granule cells, ngran, was first fixed at 2500 while the number of synapses per mitral cell,
nsyn, was set at 50, 200 or 500. The results are shown in Figure 4.7. Increasing nsyn increases the average
number of synapses per granule cell, leading to faster and more prolonged granule cell firing in a larger
number of cells. In turn, this decreases the rate of decay of the mitral cell IPSC. Increasing nsyn also
increases the amplitude of the mitral cell IPSC.

Fixing nsyn at 200 while decreasing ngran (ngran = 4900, 2500 or 1225) (Figure 4.8) has a similar effect
to fixing ngran and increasing nsyn (Figure 4.7): the durations of the granule cell response and the mitral
cell IPSC are increased. The main differences are (i) with fixed nsyn the peak of the granule cell spike
time histogram decreases and (ii) the reduction in IPSC amplitude is much less pronounced.

Increasing nsyn and decreasing ngran both have the same effect: to increase the average number of
synapses per granule cell. These effects were offset against each other by increasing both parameters so
as to keep the average number of synapses per granule cell constant at 2.0. The results are shown in
Figure 4.9, and are similar to the results for increasing nsyn with fixed ngran (Figure 4.7) with the exception
that the decay time constants of the granule cell STH and the mitral cell IPSC remain approximately
constant as nsyn is increased.

The results shown in Figures 4.7, 4.8 and 4.9 are summarised in Table 4.2. This table makes it clear
that nsyn has the dominant effect on the firing rate of the most strongly-activated granule cell and on the
amplitude of the mitral cell IPSC, but that nsyn and ngran have approximately equal and opposite effects
on the time course of the response; the most important factor affecting the time course is the average
number of synapses per granule cell.
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Figure 4.5: (A) Increasing the external magnesium ion concentration, [Mg2+], reduces the duration of the mitral
cell IPSC while having little effect on the peak current. (B) The total charge transferred to the cell (found by
integrating the IPSC curve) is reduced exponentially by increasing [Mg2+]. The sensitivity of the model (�) to
[Mg2+] is greater than is found experimentally [125] (×).
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B
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 100 spikes/s

Figure 4.6: The mitral cells respond to a 300 ms current clamp stimulus by firing several action potentials (A),
each of which produces a burst of firing in the granule cell population (C – STH), leading to pulsed inhibition of
the mitral cells (B – mitral cell IPSC). The solid bar indicates the duration of the stimulus.

4.4.3 Discussion

The simulated IPSC in a voltage-clamped mitral cell in response to a glomerular shock stimulus is similar
to that measured experimentally by Schoppa et al [125] (Figure 4.3). The amplitude is approximately
the same; the time constant of the decay is somewhat shorter.

Compared to NMDA receptors, AMPA receptors make very little contribution to the model response
(see Figure 4.4). Without NMDA receptors, granule cells fire only one or two action potentials, and the
IPSC in mitral cells is of much shorter duration. This is in good agreement with experimental findings
that, in zero Mg2+, dendrodendritic inhibition is governed almost entirely by NMDA receptors [63, 125].
An unexpected result is that the population response of granule cells is enhanced in both amplitude and
duration by removal of AMPA receptors (Figure 4.4D). This suggests that the initial, AMPA-mediated
phase of the EPSP may inhibit subsequent firing. It would be interesting to test for this effect experi-
mentally.

The effect of increasing the external magnesium ion concentration is to reduce the duration but
not the amplitude of the mitral cell IPSC (Figure 4.5). This is not surprising due to the presence of the
magnesium-block in the NMDA conductance model. The model is more sensitive to low Mg2+concentrations
than the experimental preparation: experimentally, no reduction in IPSC size is seen below 0.1 mm
Mg2+ [125] whereas the total charge is reduced to 60% of baseline in the model at the same concentra-
tion. At 1 mm, the simulation and experimental responses are about the same. The magnesium block
function used in the model was obtained from recordings of hippocampal neurones [64], not olfactory
granule cells; it is uncertain whether the discrepancy here between model and experiment is due to this
or to the differences in network connectivity.

Increasing the number of synapses per mitral cell increases the amplitude of the mitral cell IPSC,
unsurprisingly. 200 synapses per mitral cell gives an amplitude of about 2 nA, which is a typical value
seem experimentally [63, 125]. This is many fewer than the total number of synapses calculated for each
mitral cell (see §4.2.3.1). Increasing the number of synapses also increases the duration of the IPSC and
of the granule cell population response, although the principal factor appears to be the mean number
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Figure 4.7: Effect on the response to glomerular stimulation of changing the number of synapses with a fixed
number of granule cells. (A) nsyn = 50; (B) nsyn = 200; (C) nsyn = 500. Increasing nsyn increases the average
number of synapses per granule cell, leading to faster and more prolonged granule cell firing. Note the extreme
behaviour in (C) where the granule cell is initially driven so hard that it cannot sustain action potentials. The
rate of decay of the granule cell response is decreased by increasing nsyn (see the spike time histograms. The
insets show a more detailed view of the first 600 ms of the response), and this in turn leads to slower decay of the
mitral cell IPSC. For (C) the chloride reversal potential was changed from 0 mV to -40 mV, reducing the driving
force for the GABAA current, in order to prevent space-clamp breakdown.
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Figure 4.8: Effect on response to glomerular stimulation of changing the number of granule cells while keeping
the number of synapses per mitral cell constant at 200. (A) ngran = 1225; (B) ngran = 2500; (C) ngran = 4900.
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Figure 4.9: Effect on response to glomerular stimulation of changing the number of granule cells and the number
of synapses per mitral cell to keep the average number of synapses per granule cell constant. (A) ngran = 1225,
nsyn = 98; (B) ngran = 2500, nsyn = 200; (C) ngran = 4900, nsyn = 392. When the number of granule cells is
changed to compensate, the effect of increasing the number of synapses is less pronounced than when the number
of granule cells is fixed (cf Figure 4.7). The decay rate of the population response is approximately constant,
only the amplitude of the response is changed. For (C) the chloride reversal potential was changed from 0 mV to
-40 mV, reducing the driving force for the GABAA current, in order to prevent space-clamp breakdown.
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of synapses per granule cell, since increasing the number of granule cells proportional to the number
of synapses considerably reduces the effect. An interesting aspect of Schoppa et al ’s results is that the
decay time constant of the IPSC is longer than that of the NMDA conductance. I had speculated that
this was due to the presence of some long time-constant calcium-dependent process in the granule cell
or to recurrent excitation of the mitral cell secondary dendrite. For most of the simulations, the IPSC
was shorter than the NMDA current. However, in the simulations with a higher number of synapses
per granule cell, the IPSC was longer than the NMDA current, showing that the intrinsic membrane
properties of the granule cell model are sufficient to produce this effect.

How realistic is the network model? The models of the individual cells are based on experimental data
(see Chapter 2); the ratio of granule:mitral cells is biologically realistic [133]; the synaptic time constants
and maximum conductances were derived from experimental data (§4.2.2). The principal difference
between the model and the real bulb is in the connectivity of the network. The available computational
power limited the number of cells to about 5000 and the total number of synapses to about 12000. In
the model, 200 synapses per mitral cell was found to produce a similar response to the experimental
recordings. In contrast, a real mitral cell makes about 17000 dendrodendritic synapses (see §4.2.3.1). In
the simulations I found that a granule cell receiving only a single synaptic input from a mitral cell will not
usually fire an action potential, and so some of the 17000 synapses will not receive reciprocal inhibition.
Also, in general, synapses have a small probability of being activated by any given pre-synaptic action
potential, whereas the synapses in the model are always activated. Both these factors will tend to reduce
the number of functional synapses in a mitral cell, but there still seems to be a discrepancy between
model and experiment which it would be worthwhile to investigate further in future.

The representation of synaptic transmission used in this model is very simple: a pre-synaptic spike
triggers a post-synaptic conductance. However, several studies have demonstrated that dendrodendritic
inhibition can be induced in the presence of sodium-channel blocker TTX [63, 125], which suggests that
granule cell action potentials are not necessary for GABA release. More detailed studies of GABA release
from granule cells show that GABA release is evoked by calcium influx through both voltage-dependent
calcium channels (VDCCs) and NMDA channels [26, 49]. Simple spike-triggering is an approximation
of the VDCC-dependent mechanism, since the channels will be most strongly activated during spikes.
In contrast, granule cell spikes will reduce the calcium influx through NMDA channels by reducing the
driving force for calcium entry. The location of dendrodendritic synapses on granule cell spines reduces
the need for action potentials for reciprocal inhibition, since larger depolarisations can be generated within
spines than on dendritic shafts; however, action potentials may still be needed for lateral inhibition.

The simple spike-triggering model reproduces many of the features of dendrodendritic inhibition,
including the amplitude and time-course of the mitral cell IPSC, and the effects of AMPA- and NMDA-
receptor blockers on the IPSC. Recordings of spike-trains from granule cells during glomerular shock
stimulation would help to test the adequacy of the current model, since some granule cells in the model
fire at high rates (peak instantaneous firing rate up to 90 Hz). Future elaborations of the current model,
incorporating granule cell spines and calcium-dependent transmitter release, would help to elucidate the
effects of calcium-entry through NMDA receptors and suggest a computational role for this arrangement.

A number of predictions can be made based on this study. First, only a small proportion of synapses
on mitral cell secondary dendrites are activated by any given action potential. This could be tested
by measuring vesicle release probability and channel opening probabilities at these synapses. Second,
changing the number of active reciprocal synapses or the number of granule cells has predictable effects
on the mitral cell IPSC and on the granule cell population response (see Table 4.2). Testing this set
of predictions would be challenging, due to the difficulty of manipulating the relevant parameters and
measuring the relevant quantities in experimental preparations as opposed to a computer model. To
change nsyn it may be possible to use low concentrations of GABA and glutamate channel blockers,
which would block some but not all synapses. To change the number of granule cells the thickness of the
slice in an olfactory bulb slice preparation could be varied, or the deep part of the granule cell layer could
be surgically removed in a slice. A measurement of the granule cell population activity could perhaps be
performed by multi-electrode extracellular recording in the granule cell layer.

In general, these results indicate that the measurement of synaptic conductances which are dependent
on the activity and topography of the network, such as performed by Schoppa et al [125], is a powerful
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Figure 4.10: Determination of time lags. For each spike time tA
i in cell A, find the closest spike time tB

j in cell B,
provided that spike is within half the inter-spike interval (e.g. the third spike in cell A has no time lag as there
is no spike that is closer to it than to its neighbours). Then the time lag, `AB

i = tB
j − tA

i . The first and last spike
times for cell A are discarded, since the inter-spike interval is not defined before the first spike or after the last
spike.

way of testing network models.

4.5 Response to odour stimulation

4.5.1 Introduction and Methods

The aim of this experiment was to simulate the bulb network model with an ‘odour-like’ input, in order
to answer the following questions: will the large network exhibit synchronization of mitral cell firing, as
did the two-mitral cell network studied in Chapter 3? How are differences in odour intensity represented?
How will the behaviour scale to larger networks?

Many figures in this section show smoothed spike-time histograms. These are generated by summing
Gaussian curves of area 1 centered on each spike time of each cell. This has the advantage over a normal
histogram of not imposing arbitrary bins. The variance of the Gaussian functions was set to 1/4 of the
mean ISI of the fastest firing cell.

Perfect or near-perfect synchrony can easily be recognised in the spike time raster plots of the cell
population. Phase-locking and partial synchronization are much more difficult to discern. Therefore, a
numerical index is necessary to identify and quantify synchronization and phase-locking.

I use two indices, one of which is sensitive to synchronization (phase-locking with zero phase differ-
ence), the other to phase-locking in general. Both are based on statistics of the phase-lag between spikes
in different cells. The phase-lags are calculated as follows: for each mitral cell k (k = 1, . . . , n) in the
network, for each spike time tki (i = 2, . . . , Nk − 1 where Nk is the number of spikes in cell k) of that
cell except the first and last, we find the closest spike time tlj in every other cell l (l = 1, . . . , n; l 6= k),
provided that spike is within half the inter-spike interval (see Figure 4.10). The time lag for spike time
tki with respect to cell l is then defined by `kl

i = tlj − tki . The phase lag φkl
i is defined by

φkl
i =


`kl
i /(tki − tki−1) `kl

i < 0
0 `kl

i = 0
`kl
i /(tki+1 − tki ) `kl

i > 0
(4.13)
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The synchronization index, σ1, is then defined by

σ1 =
1∑

k

∑
l N

′
kl

n∑
k=1

n∑
l=1
l 6=k

∑
i

|φkl
i | (4.14)

where N ′
kl is the number of time lags for cell k with respect to cell l. N ′

kl will be less than the number of
spikes Nk since the phase-lag is not defined for the first and last spikes of a cell and some spikes in cell
k may not have a spike in cell l within half the inter-spike interval.

The phase-locking index, σ2, is defined by

σ2 =

(
1

n(n− 1)

n∑
k=1

n∑
l=1
l 6=k

Var(φkl
i )

) 1
2

(4.15)

where Var(φkl
i ) is the variance of the phase lags φkl

i of cell k with respect to cell l.

To thoroughly investigate such a complex model as that described here is a very large project. There-
fore I have carried out a few preliminary experiments which address some questions of interest. The first
two experiments examine the effects of odour intensity (§4.5.2.1) and of connectivity parameters (§4.5.2.2)
on the network response in terms of spatial patterns of firing rates and of spike synchronization/phase-
locking. The third experiment (§4.5.2.3) begins to address the question of how the network might improve
the ability of the olfactory system to discriminate similar odorants. Except where noted, the network
size was 6× 6 mitral cells and 72× 72 granule cells. The range of synaptic connections was 1/2 the size
of the granule cell array. The specific details of each experiment are given in the relevant section of the
Results.

4.5.2 Results

The response of the network model to a simulated odour stimulus which activates all glomeruli is shown
in Figure 4.11. For the first 1000 ms the mitral cells received weak, ‘background’ stimulation which did
not cause those mitral cells that are activated to synchronize their firing, although there is some evidence
of synchronization in the granule cell raster plot (Figure 4.11C), which is not surprising due to the large
‘fan-out’ from mitral to granule cells. Once the odour stimulus is added, both mitral and granule cells
rapidly synchronize their firing. Due to the synchronization of firing, mitral cell firing rates appear to be
quantized, with most cells firing at the population response oscillation frequency of about 15 Hz or at
some rational fraction of the population frequency. Because of this the variability in output firing rates
is less than the variability in input currents. However, the differences in output between neighbouring
cells can be much greater than the differences in input. The fastest-firing granule cells fire at the same
rate as the fastest mitral cells but the majority of granule cells fire at lower rates.

4.5.2.1 Effect of odour intensity

Odorants are presented to olfactory systems with a wide range of intensities, yet the identity of the
odorant is recognised almost independent of intensity. In imaging studies, the number of activated
glomeruli increases as the stimulus intensity is increased [44, 45, 65] and individual ORNs and mitral
cells fire faster. How then is the constancy of identity achieved by the olfactory system?

Two versions of the model were simulated with the same odour input but at different intensities, i.e.
the input currents to different mitral cells were in the same ratio but the absolute magnitudes of the
currents were changed. In one version there were no connections between mitral cells (nsyn = 0); in the
other, nsyn = 500.

The results are shown in Figure 4.12 (mitral cell raster plots and mean firing rates) and Figure 4.13
(smoothed spike-time histograms). As the global input intensity is raised, for the same ‘odour’ at different
‘concentrations’, the number of activated mitral cells is increased, and the firing rate of activated mitral
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Figure 4.11: Response of the mitral-granule network to a simulated odour stimulus. (A) Mitral cell raster plot
and bar graph showing input currents (dashed line) and output firing rates (solid line). In the raster plot each dot
represents a spike and each row of dots is a different cell. The two-dimensional structure of the network cannot be
represented in this plot: the network is laid out row by row into a one dimensional array. Therefore neighbouring
lines in the plot do not necessarily represent neighbouring cells in the array. (B) Mitral cell population smoothed
spike time histogram. (C) Granule cell raster plot and bar graph showing output firing rates. (D) Granule cell
population smoothed spike time histogram. Initially the network received weak, ‘background’ stimulation. At
time 1000 ms the strong odour stimulus is added. The odour is one that activates all glomeruli. Both mitral and
granule cells rapidly synchronize their firing at a rate of about 15 Hz.
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ngran:nmit nsyn ḡGABAA /nS
4 14 21.6
9 31 9.60
25 87 3.46
49 170 1.76
100 347 0.864
169 587 0.511

Table 4.3: Parameters used to assess effect of number of granule cells on network synchronization

cells is increased, although this saturates at high input levels. Compared to the no-connections case,
firing rates are lower with mitral–granule connections, and the responses saturate at lower levels. Syn-
chronization of the responses is apparent in the raster plots and in the smoothed spike-time histograms
for maximum input levels of 0.8–1.0 nA and upwards.

The graph of synchronization and phase-locking indices against maximum input confirms this: the in-
dices begin to depart significantly from the no-connections baseline between 0.8 and 1.0 nA (Figure 4.14).

To determine whether there is a significant difference at 0.8 nA, each model was simulated six times
with different seeds for the random number generator, giving σ1 = 0.2126±0.0007 and σ2 = 0.1250±0.0002
(mean ± standard error, n=6) with no connections, σ1 = 0.2128 ± 0.0018 and σ2 = 0.1240 ± 0.0005
with connections. For each index, an F-test was carried out to determine whether the no-connections
distribution had the same variance as the with-connections distribution. For the synchronization index
σ1, P = 0.03; for the phase-locking index σ2, P = 0.01. Therefore for both indices the distributions have
unequal variances. This was expected because the only source of variability in the no-connections network
is different inputs, whereas the with-connections network also has variability from different connections.
I next carried out a one-tailed t-test assuming unequal variances: for σ1, P = 0.47; for σ2, P = 0.06.
Therefore the differences in the phase-locking and synchronization indices between the no-connections
network and the with-connections network are not significant at the 5% level at 0.8 nA. All statistical
tests were carried out in Gnumeric v0.54.

4.5.2.2 Effect of varying the ratio of granule:mitral cells

As discussed in §4.2.3.2, as the size of the network is changed, so are the network properties. Since it is
not possible to simulate a full-sized network, I was interested in whether simulating networks of different
sizes would reveal some trend which would allow extrapolation of results to large networks.

Therefore, I changed the number of granule cells in the network while adjusting nsyn and ḡGABAA to
keep the total input to granule and mitral cells approximately constant:

synapses per granule cell (mean) =
nmit

ngran
nsyn = 3.472 (4.16)

peak mitral cell inhibition = nsyn ḡGABAA = 0.3 µS (4.17)

(see Table 4.3 for the parameter sets used).
This change in the number of granule cells appears to have no consistent effect on the firing rate

(Figure 4.15A) or synchronisation/phase-locking indices (Figure 4.15B) of the mitral cells.

4.5.2.3 Responses to similar odorants

One possible function of the olfactory bulb is to increase the difference between the representations of
two similar odours in order to make it easier to discriminate between them. I conducted a preliminary,
limited investigation to test whether the current network could carry out this function for two arbitrarily
chosen inputs. More extensive studies will be needed to determine the generality of these results.

In this experiment I stimulated the network with the following two odour vectors:

Odour A ( 0.0, 0.0, 0.0, 1.0, 0.0, 0.4, 0.2, 0.0, 0.0, 0.0 )
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Figure 4.12: The effect of input intensity on mitral cell response. Mitral cell raster plots with no mitral–granule
connections and with 500 synapses per mitral cell, for different values of maximum current (leftmost column,
units nA; see text for more detail). The bar graphs next to each raster plot show the number of spikes in each
line of the raster in the final 2000 ms of the simulation.
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Figure 4.13: Effect of input intensity on mitral cell response – smoothed spike time histograms for the raster plots
shown in Figure 4.12.
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Figure 4.14: Effect of input intensity on (A) phase-locking index and (B) synchronization index. × no connections;
+ 500 synapses per mitral cell.

Odour B ( 0.0, 0.0, 0.1, 0.9, 0.0, 0.5, 0.1, 0.0, 0.0, 0.0 )

The vectors were chosen to have small differences in a few of the elements. This represents my definition
of ‘similar’ for the purposes of this experiment. To generate the input vectors from the odour vectors I
used two versions of the odour transformation matrix A (see §4.2.4.1 for definitions), one generated from
a Gaussian distribution with mean 0.0 and variance 0.5 (the dense mapping), the other from a uniform
distribution over the range (-3,1) (the sparse mapping). The main difference is that the sparse mapping
leads to more not-activated and weakly-activated inputs than does the dense mapping.

For these experiments a larger mitral cell array was used than in the previous experiments (8 × 8
instead of 6× 6) in order to more clearly resolve spatial effects.

Figure 4.16 shows the input vectors and output firing rate vectors for Odours A and B, with the
dense mapping, under three different experimental conditions. Each pair of vectors is normalised by
the maximum element from both vectors, to have elements between 0 and 1. To quantify the difference
between the (normalised) vector for Odour A, yA, and the vector for Odour B, yB , we calculate

∆ =
1
n

n∑
k=1

|yA
k − yB

k | (4.18)

where yA
k is the kth element of yA, etc. For the input vectors, ∆ = 0.024. For the output vectors,

∆ = 0.038 (Figure 4.16B), ∆ = 0.050 (Figure 4.16C) and ∆ = 0.008 (Figure 4.16D). Except in the
low-current case, for which ∆ is skewed by the large number of inactive cells, the difference between
the output vectors is greater than between the input vectors, which would presumably make it easier
to discriminate between the outputs than between the inputs. The larger values of ∆ in the outputs
compared to the inputs are due to a small number of cells with very large differences in output firing
rate.

Similar results are seen with the sparse mapping (Figure 4.17). Here, for the input vectors, ∆ = 0.026.
For the output vectors, ∆ = 0.031 (Figure 4.17B) and ∆ = 0.034 (Figure 4.17C).

The changes in ∆ do not appear to be related to the degree of synchronization, which is very different
for the different mappings and different parameter sets (Figure 4.18). However, temporal factors could
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Figure 4.15: Effect on synchronization of changing the ratio of granule:mitral cells. (A) Smoothed mitral cell
spike histograms with different numbers of granule cells. (B) Synchronization (×) and phase-locking (◦) indices
as a function of the number of granule cells (error bars show standard error of the mean, n=6).
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Figure 4.16: Comparison of inputs and outputs for two similar odours, with a dense odour mapping. In each
graph, the solid red line is Odour A, the dashed blue line is Odour B. (A) Input currents. (B) Output firing
rates with connection range one-quarter the size of the cell array. (C) Output firing rates with connection range
one-tenth the size of the cell array. (D) Output firing rates with input currents one-third of those in (B) and (C),
connection range one-quarter the size of the cell array.
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Figure 4.17: Comparison of inputs and outputs for two similar odours, with a sparse odour mapping. In each
graph, the solid red line is Odour A, the dashed blue line is Odour B. (A) Input currents. (B) Output firing
rates with connection range one-quarter the size of the cell array. (C) Output firing rates with connection range
one-tenth the size of the cell array.
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be used to discriminate between similar odours. Figure 4.19 shows granule cell raster plots and smoothed
spike-time histograms for stimulation with the two similar odours. With Odour B, there are two distinct
phases of global oscillation interspersed with a period of asynchrony, whereas with Odour A, global
oscillation develops more slowly but persists. These features (together with the differences in time-
averaged firing rates) could theoretically be used to discriminate between the odours.

4.5.3 Discussion

Global synchronization of mitral and granule cell firing was seen in Figure 4.11 (‘synchronization’ is an
approximate term, since slower-firing cells tend to fire with a small phase-lag compared to the fast-firing
cells). Does this predict that synchronization should be easily found in experimental olfactory bulb
preparations? An important difference is that the current model has many fewer cells than the real
olfactory bulb, and hence the connectivity is higher in the model. High connectivity means that distant
cells communicate easily and so synchronization is more likely to occur.

The ‘connection fraction’ (CF) and ‘mutual connection fraction’ (MCF) were defined in §4.2.3.1. It
is possible to estimate these metrics for the rabbit olfactory bulb. The surface area of the mitral cell
layer in rabbit is about 20 mm2 [119]. The volume of the entire bulb is 87.7 mm3 [121], giving a surface
area of 95.5 mm2 if we assume spherical geometry. Mitral cell dendrites ramify in the external plexiform
layer, the surface area of which must be between the above values. Since the mitral cell dendrites tend
to ramify in the deep portion of the EPL, the effective surface area for connections will be nearer to the
smaller value. 30 mm2 would seem a reasonable value.

The radius of the mitral cell secondary dendrite arbour in rabbit is 850 µm, giving a field area of
approximately 2.3 mm2. Therefore

area of dendrite arbour
effective surface area of EPL

=
2.3
30

= 0.08 (4.19)

i.e. one cell covers approximately 1
13 th of the EPL ‘surface area’. This same area contains the dendrites

of approximately 0.08× (5× 106) = 4× 105 granule cells.
The number of synapses formed by one mitral cell was earlier calculated to be approximately 17000.

Therefore, assuming each mitral cell never forms more than one synapse with any granule cell, CF =
17000/400000 = 0.043, i.e. a mitral cell contacts about 4% of the granule cells within its arbour.

A simple estimate of the number of granule cells having connections to both members of any given pair
of neighbouring mitral cells is then 0.043×0.043×4×105 ' 720, assuming that the distance between the
cells is much smaller than the radius of the arbour. This gives MCF = 720/17000 ' 4%, and corresponds
to copious branching (p(r) = constant). This is a lower limit since p(r) is likely to fall with distance from
the soma, so nearby mitral cells will have a higher proportion of common contacts.

So we have a lower limit of 4% for the mutual connection fraction in the rabbit olfactory bulb, and
a value of 4% for the connection fraction. In the network model, for the experiments varying odour
intensity and the ratio ngran:nmit, CF = 0.12 and MCF ≥ 0.15. In summary, the connectivity of the
network is only about three times as high as in the real bulb. Since synchronization is robustly seen
in the network, it should also be seen in the bulb, although perhaps less easily. As mentioned in the
Introduction, synchronization was seen in about 25% of cell pairs recorded in the rabbit olfactory bulb in
vivo [67]. Synchronization is less likely to be seen in the slice preparation, since much of the mitral cell
secondary dendrite arbour is not preserved.

Increasing input intensity increases synchronization/phase-locking. This result can be understood by
reference to the results of Chapter 3, where it was shown that n:1 phase-locking is promoted by strong
inhibition of the mitral cells, which of course requires strong activation of the granule cells. Figure 3.23
shows that for small values of α, the drive to the most strongly activated cell, granule cells fire at low rates
or not at all, inhibition of the mitral cells is therefore weak, and the regions of parameter space in which
n:1 phase-locking is seen are very small. Only at high values of α are large regions of n:1 phase-locking
seen. This effect should be seen in any neural system which has principal neurones mutually inhibiting
one another via interneurones. It would be very interesting to search for this effect in the vertebrate
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Figure 4.18: Granule cell raster plots for stimulation with Odour A, with different odour → input mappings and
different connection ranges. (A) and (B) use the dense mapping (see text); (C) and (D) use the sparse mapping.
For (A) and (C) the range of connections was one-quarter the size of the cell array; for (B) and (D) the range
was one-tenth the size of the array. Good global synchronization occurs only in (C). Local synchronization can
be seen in the other plots.
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Figure 4.19: Granule cell raster plots and smoothed spike-time histograms for stimulation with (A) Odour A and
(B) Odour B. The slow temporal changes in the power of the global oscillation are quite different in the two
cases. The parameters are the same as for Figure 4.16B.
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olfactory bulb or insect antennal lobe. A secondary prediction is that the firing rate of the granule cells
should be comparable to or greater than that of the mitral/tufted cells when synchronization is seen.

A secondary effect of synchronization is that mitral cell firing rates become quantized, which is likely
to reduce the effectiveness of using firing rates as part of the olfactory code. This suggests that the
discriminatory ability of the olfactory system may be maximized at intermediate input intensities.

Over almost two orders of magnitude, the ratio of mitral:granule cells has no consistent effect on
the firing rates or synchronization of the network provided other parameters are adjusted to maintain
constant average input to the individual cells. This is very convenient for modelling, since if fewer granule
cells need be simulated, more mitral cells can be added to the network.

The question of how the olfactory bulb processes its inputs, and how this might contribute to discrim-
ination of different odours is a complex one, which will not be answered quickly. Here I have carried out
some preliminary experiments which suggest that a bulb-like network can enhance the differences between
the representations of similar inputs. However, the enhancement is not dramatic, and the question of
how the cortex might use this enhancement is not addressed. These experiments do not address how the
temporal structure of the response may be used in odour processing, but this model could now be used
to examine hypotheses about this problem.





Chapter 5

Discussion and Conclusions

In this final chapter I discuss the behaviour of the olfactory bulb network model in relation to experimental
recordings from the olfactory bulb, to other models of the bulb and to theories of olfactory bulb function.
I then discuss the strengths and limitations of the model, and how the approximations made in developing
the model may affect the validity of the results. Finally I lay out a program of future work, building
upon the results of this dissertation, to further investigate the processing of sensory information in the
olfactory bulb.

5.1 Comparison of the model with the real bulb

The model was compared closely to one particular set of experimental data [125], obtained from electri-
cal stimulation of the glomerular layer. Very similar experimental results have been obtained indepen-
dently [26, 63]. The agreement between simulation and experimental results was good, although with
fewer synapses in the model than are calculated to exist in the real bulb. A number of predictions regard-
ing the effect of network connectivity on the synaptic response were made, which may be experimentally
testable (see §4.4.3).

In the response to inputs mimicking odour stimulation, the model behaviour showed much less tempo-
ral variation in firing rates than is seen experimentally [52, 53]. This may be due to the lack of noise in the
model inputs and to the heterogeneity of synaptic strengths throughout the network. It could also reflect
the lack of periglomerular cells in the model. The model clearly shows temporal oscillations in network
activity and synchronization of spikes between different neurones, both of which are seen experimentally
(see §1.1.3.4). The analysis in Chapter 3 demonstrated that synchronization and phase-locking should be
seen in any similarly-connected network provided the input levels and synaptic strengths are sufficiently
strong.

This model is more detailed and biologically realistic than any previously-published olfactory bulb
network model. It is most comparable to the models of White et al [153] and of Linster [81, 82].

As mentioned in the Introduction, the intention of White et al [153] was ‘to investigate whether
available data are sufficient for formulating a simulated bulb circuit that can generate realistic mitral cell
output.’ This was also one of the intentions of the current study, but the available data and available
computer power are both much greater now than then, and I have been able to go considerably beyond
that study. In particular, White et al were limited to qualitative comparisons of mitral cell voltage traces,
whereas I have been able to compare synaptic currents as well as voltage traces, which gives a stronger
constraint on the configuration of the network. I have also used my model to begin to address questions
about olfactory bulb ensemble behaviour, such as properties of stimulus-evoked synchronization.

The models of Linster and her collaborators [81, 82] are more schematic than either White et al ’s
model or the model presented here, but they are used to address the role of lateral inhibition in tuning
the odour response. In the model of Linster and Gervais [81] the OB network acts to reduce the overlap
between the representations of different odorants. This is similar to my finding in §4.5.2.3. I have not
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fully explored the range of parameters within which this tuning occurs for my model, but it would be
interesting in future to compare my results in more detail with those of Linster, and to attempt to tune
the parameters of Linster’s simple model to reproduce the behaviour of my detailed model.

Other abstract models to which my detailed model could be linked are the associative memory models
of Hendin, Horn and Tsodyks [56] and Hoshino, Kashimori and Kambara [60]. This would first require
a physiologically-realistic implementation of synaptic plasticity in my model, however.

The results presented here are consistent with most of the hypotheses about olfactory bulb function
discussed in the Introduction (§1.1.4). Regarding the first hypothesis, the model does appear to reduce the
overlap between representations of similar odorants, although further work on this is required. Regarding
the second hypothesis, the bulb circuitry does introduce temporal correlations, in the form of phase-
locking, between signals from different receptors. Whether these correlations are computationally useful
remains to be demonstrated. Regarding the third hypothesis, the bulb appears to be able to encode
information about stimulus strength in the degree of synchronization, which may allow this information to
be separated from information about stimulus identity. The remaining hypotheses, regarding associative
memories and the transformation of odour space, require different synaptic weights at different synapses
and so are beyond the scope of the current work.

5.2 Validity of the model

5.2.1 Validity of detailed single-cell models

In Chapter 2 I developed simple biophysical, compartmental models of the olfactory mitral and granule
cells based on the morphologically-detailed models published by Bhalla and Bower [11]. These simplified
models were used as the basis of further studies. It is important to ask how valid the original models are
as representations of real cells.

5.2.1.1 Morphology

The sizes of mitral, tufted and granule cells vary between species and within an individual olfactory bulb,
but the general shape is constant within mammals, and presumably the cells fulfill the same or a very
similar function in different species. The models of Bhalla and Bower [11] use ‘average’ morphologies
based primarily upon data from rabbit, but also mouse and rat [47, 94, 113, 114]. It would be interesting
to investigate the effect of heterogeneity in cell morphology on the responses of the single cells and of the
network. In particular, the model could be easily extended to include both mitral and tufted cells and
all three types of granule cell.

5.2.1.2 Active channel properties

In Bhalla and Bower’s models, ‘The identities of the channels included in each model were inferred from
the published effects of specific channel blockers on the electrical properties of each cell.’ At the time
their model was published, no detailed descriptions of channel kinetics were available for the mitral cell,
so model parameters were based on known values for similar channels in other cell types. The model
contains a fast sodium channel (Na), four potassium channels – two potassium delayed rectifier channels
(K and Kfast), an anomalous rectifier channel (KA) and a calcium-dependent channel (KCa) – and an
L-type calcium channel (LCa). More recent publications are largely consistent with this scheme. Chen
and Shepherd [25] suggest that there may be two types of A-family potassium currents, the rapidly
inactivating classical A-current and a slowly inactivating potassium current (or D-current). Wang et
al [150] found and partially characterised an A-type potassium current and a delayed rectifier, although
both channel types are activated at considerably more depolarised potentials than the channels used in
Bhalla and Bower’s model (Table 5.1). They found two distinguishable calcium-dependent potassium
currents.

Subthreshold membrane potential oscillations have been observed recently in mitral/tufted cells [25,
33] and demonstrated to be an intrinsic membrane property dependent on a voltage-dependent sodium
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channel rather than a synaptic phenomenon [33]. One suggested mechanism for such oscillations is
an interaction between a persistent sodium current and a slowly inactivating potassium current [25],
although lowering the external potassium concentration affects neither the amplitude nor frequency of
oscillations [33].

The distribution of L-type calcium channels has been investigated using imaging methods [15, 123], in
cultured tadpole OB neurones. The observed density was highest on somata and decreased with distance
along the dendrites. This is in reasonable agreement with the best-fit distribution of Bhalla and Bower.
An N-type calcium current is also found in cultured OB neurones, mainly on dendrites [15].

Conductance densities of sodium and potassium channels have now been measured in rat mitral cell
primary dendrites [14]. The experimental values of ḡNa = 90 pSµm−2 and ḡK = 513 pSµm−2 compare to
the values of ḡNa = 13.4 pSµm−2 and ḡK = 29.7 pSµm−2 found by Bhalla and Bower [11] by model fitting
and ḡNa = 260 pSµm−2 and ḡK = 42 pSµm−2 obtained by Shen et al [132], also by model fitting. There
are large discrepancies here, with Bhalla and Bower’s sodium conductance being an order of magnitude
smaller than the other two values, and the experimental potassium current an order of magnitude larger
than the two model values. A partial explanation for the former may be that the Bhalla and Bower
model has a much larger sodium conductance in the soma than in the primary dendrite, whereas the
experimental study found uniform sodium conductance throughout the soma and primary dendrite, and
this is modelled in Shen et al. Regarding the second discrepancy, Shen et al suggest it may be attributed
to the very large variance of the experimental data set [14].

At the time Bhalla and Bower’s model was published, knowledge about granule cell active channels
was considerably more sketchy than for mitral cells. The model includes a sodium channel (Nagran) and
three potassium channels: delayed rectifier (K), A-type (KA) and non-inactivating muscarinic (KM).
Schoppa and Westbrook [126] have recently measured some properties of sodium, delayed rectifier and
KA conductances in rat granule cells. There are considerable differences between the measured parameters
and those used by Bhalla and Bower, except in the case of the K channel (Table 5.2). Of particular note
are the differences in the KA conductances (Figure 5.1). In addition, the IA current was measured to be
much larger in comparison to IK in the dendrites than in the soma. This is in contrast to the Bhalla-
Bower model in which there are no dendritic KA channels. In light of the crucial role the KA current
appears to play in regulating mitral–granule synaptic communication [63, 125, 126], it is very probable
that the Bhalla-Bower granule cell model will prove to be inadequate for bulb modelling.

In summary, at the time this work was begun, the models of Bhalla and Bower were the only ones
available, and there was little available data to allow improvement of them. The models are constrained by
their morphological detail and unknown parameters were obtained by fitting to experimental recordings.
On this basis it is reasonable to use them as the basis of network modelling of the olfactory bulb, and I
am confident that my main conclusions in Chapters 3 and 4 would be unchanged by using an updated
model.

However, new data have become available which may have a bearing on studies of information process-
ing in the bulb, particularly the subthreshold membrane potential oscillations in mitral/tufted cells [25, 33]
and the granule cell KA current. It will therefore be important in future to update the detailed models
of Bhalla and Bower, incorporating recent experimental data about ion channels and fitting to recordings
from the primary and secondary dendrites as well as to recordings from the soma. To repeat the process of
reducing the full models to few-compartment models would be straightforward, and then the differences

Wang et al Bhalla and Bower

IA Mid-point voltage /mV activation 7.6 -42
inactivation -47.4 -110

Time constant /ms activation 3.1–12.2 1.4
inactivation 43.4–51.2 150

IK Mid-point voltage /mV activation 21 -10

Table 5.1: Comparison of mitral cell channel parameters from Bhalla and Bower [11] and Wang, McKenzie and
Kemm [150].
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Schoppa and Bhalla and
Westbrook Bower

IA midpoint voltage for steady-state inactivation /mV −66± 4 -110
activation threshold /mV −44± 2 -100
inactivation time constant /ms 24± 5 150

IK activation threshold /mV −33± 5 -38
INa activation threshold /mV −41± 3 -70

midpoint voltage for steady-state inactivation /mV -63 -52
inactivation time constant at -18 mV /ms 0.9± 0.11 3

Table 5.2: Comparison of granule cell channel parameters from Bhalla and Bower [11] and Schoppa and West-
brook [126].
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Figure 5.1: The activation and steady-state inactivation curves for the granule cell KA channel, as measured by
Schoppa and Westbrook [126] (points), compared to those used by Bhalla and Bower [11] (lines)
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in network behaviour due to the different single-cell properties could be investigated.

5.2.2 Validity of simplified models

As well as the validity of the original, morphologically-detailed models it is important to assess the validity
of the simplified models.

In terms of the times at which action potentials occur (and therefore of firing rates) the reduced models
fit the full models closely. In a network in which neurones communicate via spike-triggered synapses these
reduced models are therefore a valid substitute for the full models.

However, these morphologically-simple models ignore most of the information processing which may
be occurring within dendrites and spines. The reduced mitral cell model separates the inhibitory inputs
to the secondary dendrites from the excitatory inputs to the primary dendrite tuft and from the zone of
spike initiation, but interactions within the secondary dendrites or within the tuft cannot be represented.
Therefore, the current models must be considered a first approximation, and morphologically-detailed
models or simplified models which take account of dendritic processing should be introduced to obtain a
fuller picture.

5.2.3 Validity of the network model

The most important simplifications and approximations made in the network model are:

i. Only mitral and granule cells are included. Tufted cells are assumed to be equivalent to mitral
cells, or to be involved in a largely separate, functionally-independent circuit. Periglomerular cells
are not included. A more detailed justification for this simplification is given in §4.2.1.

ii. Synapses are spike-triggered. No membrane depolarisation short of a full action potential is suf-
ficient to cause a post-synaptic potential. How well this represents the synaptic properties found
experimentally is discussed in the previous chapter, §4.4.3.

iii. The procedure for specifying connections between mitral and granule cells assumes, effectively,
no branching of the mitral cell secondary dendrites. The effects of specifying connections more
realistically will be complex; one effect is likely to be an increase in the effective communication
range of the mitral cells.

iv. The number of cells in the network is 100-1000 times fewer than in the real olfactory bulb. This
is not a problem when simulating a limited region such as a single glomerulus (§4.4), and may be
compensated for by scaling other parameters when simulating larger regions.

Finally, I should like to note that although many simplifications and approximations have had to
be made in developing the single-cell and network models, this is an advantage since it avoids too many
assumptions about unknown elements. On the other hand, to simplify further would have risked throwing
out many experimentally-measured parameters. This model can be considered a base upon which more
detailed models can be built, and with which they can be compared.

5.3 Conclusions

The principal aim of this project has been to develop a detailed, biologically-realistic model of the
olfactory bulb to integrate data from different experimental approaches and to provide a link between
detailed experimental data and more abstract theories of information processing in the olfactory system.
To what extent has this aim been achieved?

In the Introduction I suggested that the model should have explanatory value, predictive value and
an integrative function. All of these have, to some extent, been achieved.
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Explanatory value. Experiments with the model have given insight into the origin of oscillations and
synchronization in the olfactory bulb and how the pattern of connections can affect the behaviour.
Explanations of higher-level issues such as the role of the olfactory bulb in olfactory coding have
not yet been addressed.

Predictive value. I have been able to make a number of predictions, for example that increasing the
average number of synapses per granule cell will increase the duration of the reciprocal IPSC in
the mitral cell, and that increasing odour concentration will increase the tendency of the cells to
synchronize their firing. To what extent these predictions are (i) experimentally testable and (ii)
correct remains to be seen.

Integrative function. The parameters of the model have been taken from various reports in the liter-
ature. In general, the different sources are consistent. The most obvious discrepancy is between
the indirect calculations of mitral cell synaptic density in §4.2.3.1 and the synaptic density needed
for the model to reproduce the experimental results of Schoppa et al (§4.4). Resolution of this
discrepancy could provide much information about synaptic integration by the granule cell.

In the Introduction I also listed some biological and computational problems I wished to address
using the model. The first question was whether oscillations and/or spike synchronization should occur
in the olfactory bulb, how they arose and what was their computational function. My conclusion is that
spike synchronization, which leads to oscillations in the population activity, should indeed be found in the
olfactory bulb, and that the synchronization arises from the mutual inhibition of mitral cells mediated via
the reciprocal synapses with granule cells. The question about the computational role of synchronization
remains to be addressed.

The second question was how the properties of individual cells and synapses influence the network
behaviour. This question was not directly addressed in the network, but in the two- and three-cell
systems (Chapter 3) the influence of synaptic delays, synaptic time constants and the properties of the
cell membrane on the firing rates and phase-locking behaviour of the cells was analysed in detail for the
simple integrate-and-fire model. The more complex biophysical model was shown to behave similarly
provided the system was not driven too hard.

The third problem was to elucidate the role of lateral inhibition in the olfactory bulb. One aspect of its
role is to support synchronization, as discussed above. The second aspect of its role, to affect the spatial
representation of odours within the bulb, was not investigated in such detail, although the preliminary
experiments in §4.5.2.3 support the hypothesis that lateral inhibition enhances the differences between
the representations of similar odorants.

The last problem was methodological rather than biological. How well can a model with ten thousand
cells approximate the real bulb with millions of cells? Two approaches were taken. The first was to study
a sub-region of the bulb – a single glomerulus – for which the model can have almost as many cells as in
the real system. This is useful for studying how single cells behave in the network context, but cannot
address questions about the representation of odours. To approach the modelling of the entire bulb,
simulation experiments were carried out to show that the ratio of granule:mitral cells did not have a large
or consistent effect on the network behaviour, provided other parameters were scaled to keep the level of
input to individual cells constant. This opens the door to simulating much larger networks representing
a large fraction of the bulb. By reducing the number of granule cells, thousands of mitral cells, grouped
in dozens or hundreds of glomeruli, can be simulated.

5.4 Further work

The work presented in this dissertation is only a beginning. The model presented here can serve as the
foundation of an extensive project to investigate how information is processed in the olfactory bulb.

Particular components of that project are as follows:

• A detailed study of the spatial and temporal distribution of activity in the olfactory bulb during
odour stimulation, with particular reference to the binding hypothesis, building on the results
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reported in §4.5. Experimental techniques are starting to become available which can track activity
in many cells in real time, for example high-resolution optical imaging based on voltage-sensitive
dyes or intrinsic signals, and multi-electrode arrays which can record simultaneously from dozens of
cells. A model such as the one presented here is needed to make sense of the complex data available
in such experiments.

• Refinement and extension of the model. The most important refinements/extensions are: (i) up-
dating the single cell models and including details of information processing in dendrites and spines;
(ii) incorporating periglomerular neurones; (iii) distinguishing between mitral and tufted cells; and
(iv) modelling the dendrodendritic synapses in more detail, particularly the role of calcium in neu-
rotransmitter release. The results presented here can serve as a baseline against which the effects
of adding and refining elements can be measured.

• Studying plasticity and learning in the olfactory system. How the behaviour of the model is af-
fected by changing synaptic strengths will shed light on how the real olfactory bulb is changed by
experience, and the effects of that on olfactory perception.

The use of models in neuroscience is an iterative process. It is hoped that this model may be used
to guide experimental investigations, which will then feed back into better models, suggesting further
experiments and so on until the path from smelling a rose to remembering the childhood garden is no
longer so mysterious.





Appendix A

Mathematical appendix

This appendix has two sections. The first is an extension of §3.2.3. The envelopes of possible values of the
inter-spike interval are derived for the case of harmonic locking in the two-cell integrate-and-fire system.
The second section contains some expressions which are plotted in Chapter 3 but which are not given
there. The derivations of these expressions are not given here, but in each case the derivation proceeds
similarly to one which is given in Chapter 3.

A.1 Calculation of inter-spike-interval envelope for harmonic
locking

In order to relate the spiking model to a firing rate model it would be useful to be able to calculate the
ratio T2/T1 as a function of the four parameters α, θ, δ and td. As a first step, we can calculate, for Cell
1, the envelope within which all possible values of the inter-spike interval must lie, and the same for Cell
2. Taking the ratio of the mid-points of these envelopes gives an approximation of n1/n2.

Calculation of the envelope for T1 is straightforward. Trivially, Tmin
1 = T . Tmax

1 arises when Cell 1 is
inhibited just before it reaches threshold. Using equation 3.4 it is simple to show that

Tmax
1 = T + τ ln

(
1 +

δ(1− θ)
θ + α

)
(A.1)

The envelope for T2 is discontinuous. First consider the range within which 1<n1/n2 <2. The shortest
T2 will be a period receiving only a single downward step, and in which that step occurs earliest. Let t∗

be the time from the last firing to the downward step. For small td, Tmin
2 = t∗ + T (see Figure A.1A). It

can be easily shown from equation 3.5 that

t∗ = −τ ln
[
θeT/τ − δ(1− θ)

]
(A.2)

and therefore

Tmin,A
2,1<n1/n2<2 = τ ln

[
1 + α

θ(1 + α)− δ(1− θ)(θ + α)

]
(A.3)

For larger td, a shorter Tmin
2 is obtained (Figure A.1B):

T ′ = τ ln
[
1 + α + δ(1− θ)e(2td−t∗)/τ

θ + α

]
(A.4)

where T ′ is a period of Cell 1 during which it receives one inhibitory step.,

Tmin,B
2,1<n1/n2<2 = τ ln

[
1
θ

(
1 + δ(1− θ)et∗/τ

)]
= t∗ + T ′ (A.5)
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Figure A.1: Illustration of the minimum firing period for Cell 2, for a given α. (A) small td, (B) large td. Solid
line = Cell 1, dashed line = Cell 2.

⇒ t∗ = τ ln
[

θ + α− δθ(1− θ)e2td/τ

θ(1 + α)− δ(1− θ)(θ + α)

]
(A.6)

Tmin,B
2,1<n1/n2<2 = τ ln

[
1 + α− δ2(1− θ)2e2td/τ

θ(1 + α)− δ(1− θ)(θ + α)

]
(A.7)

The threshold between these two occurs when t∗(from eq. A.6) = 2td and is

td =
τ

2
ln
[

θ + α

θ(1 + α)− αδ(1− θ)

]
(A.8)

Now consider the range within which 2 < n1/n2 < 3. Now the shortest T2 will be a period receiving
only two downward steps, and in which those steps occur earliest. For small td, Tmin

2 = t∗ + 2T and it is
easily shown that

Tmin,A
2,2<n1/n2<3 = τ ln

[
(1 + α)2

[θ(1 + α)− δ(1− θ)(θ + α)] (1 + α)− δ(1− θ)(θ + α)2

]
(A.9)

cf equation A.3. For larger td, Tmin
2 = t∗ + T ′ + T and so

Tmin,B
2,2<n1/n2<3 = τ ln

[
(1 + α)

(
1 + α− δ2(1− θ)2e2td/τ

[θ(1 + α)− δ(1− θ)(θ + α)] (1 + α)− δ(1− θ)(θ + α)2

)]
(A.10)

cf equation A.7.
There is possibly a further solution with still higher td, for which Tmin

2 = t∗ + T + T ′, but I have not
calculated this because it will rarely or never occur. Expressions for Tmin

2 can be obtained for the ranges
3<n1/n2 <4, 4<n1/n2 <5, etc., similarly.
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The expressions for Tmin,A
2 (Equations A.3 and A.9) may be re-expressed in terms of T as:

Tmin
2,1<n1/n2<2 = −τ ln

(
θ − δ(1− θ)e−T/τ

)
(A.11)

Tmin
2,2<n1/n2<3 = −τ ln

(
θ − δ(1− θ)e−T/τ − δ(1− θ)e−2T/τ

)
(A.12)

respectively, which suggests that

Tmin
2,m<n1/n2<m+1 = −τ ln

θ − δ(1− θ)
m∑

j=1

e−jT/τ

 (A.13)

= −τ ln
(

θ − δ(1− θ)
(

1− e−mT/τ

1− e−T/τ
− 1
))

(A.14)

by summing the geometric series. This expression makes it very easy to calculate Tmin
2 for any m.

In every case,

Tmax
2 = Tmin

2 + τ ln
(

1− (1− δ)(1− θ)
θ

)
(A.15)

The next stage in calculating of the envelope within which all possible values of the inter-spike interval
must lie, is to derive the boundaries in α at which n1/n2 = 2, 3, 4, etc. Consider Figure A.1A. As α is
increased, t∗ increases relative to T until the starting spike collides with the previous spike in Cell 1
(Figure A.2). At this point,

T ′ = τ ln
[
1 + α + δ(1− θ)e2td/τ tθ

θ + α

]
(A.16)

and

t∗ = −τ ln
[
θ

(
1 + α

θ + α

)
− δ(1− θ)

]
= T ′ − τ ln(tθ) (A.17)

where tθ = (1− (1− δ)(1− θ))/θ from which we obtain

α =
1

θ + δ(1 + θ)

(
−K1 +

[
K2

1 + 4(θ + δ(1 + θ))K2

] 1
2
)

(A.18)

where

K1 = δ
(
e2td/τ

(
θ2 − δ2(1− θ)2

)
− θ(θ + 3)

)
(A.19)

K2 = θ
(
θ(1− 2δ) + δe2td/τ

(
δ(1− δ)(1− θ)2 + θ

))
(A.20)

This is the boundary at which n1/n2 = 2. The other boundaries can be calculated similarly. An example
of the resulting envelope for T2 is shown in Figure 3.12.

The equations for the minimum-maximum inter-spike interval envelope could now be used to obtain
an approximate value for n1/n2 as a function of α, θ, δ and td.

A.2 Periods and time lags for alternative synaptic models

Type A firing
Constant step, no self-inhibition

TA
1 = τ ln

[
1 + α + δ(1− θ)e(tEL+td)/τ

θ + α

]
(A.21)

TA
2 = τ ln

[
1 + δ(1− θ)e(td−tEL)/τ

θ

]
(A.22)
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Figure A.2: Illustration of Tmin
2 when n1/n2 is just less than 2.00. Increasing α beyond this point will cause the

firing time of Cell 2 to jump back in time so that Cell 2 receives two inhibitory pulses, and there is a discontinuous
change in Tmin

2 . Solid line = Cell 1, dashed line = Cell 2.

tEL = τ ln

[
1
2θ

(
α

δ
e−td/τ +

[(α

δ
e−td/τ

)2

+ 4θ(θ + α)
] 1

2
)]

(A.23)

αthreshold =
θ
(
e2td/τ − 1

)
1 + 1

δ

(A.24)

Variable step, no self-inhibition

TA
1 = τ ln

[
1 + α

θ + α

(
1− δ + δe(tEL+td)/τ

)]
(A.25)

TA
2 = τ ln

[
1− δ + δe(td−tEL)/τ

θ

]
(A.26)

tEL = τ ln

[
1

2θ(1 + α)

(
α

δ
e−td/τ + (1− δ)(1− θ)

+
[(α

δ
e−td/τ + (1− δ)(1− θ)

)2

+ 4θ(1 + α)(θ + α)
] 1

2
)]

(A.27)

αthreshold =
θ
(
e2td/τ − 1

)
1 + (1−δ)(1−θ)

δ − θe2td/τ
(A.28)

Constant step, self-inhibition

TA
1 = τ ln

[
1 + α + δ(1− θ)etd/τ + δ(1− θ)e(tEL+td)/τ

θ + α

]
(A.29)

TA
2 = τ ln

[
1 + δ(1− θ)etd/τ + δ(1− θ)e(td−tEL)/τ

θ

]
(A.30)

tEL = τ ln

 1
2θ

α

(
1 +

e−td/τ

δ

)
+

[
α2

(
1 +

e−td/τ

δ

)2

+ 4θ(θ + α)

] 1
2
 (A.31)
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αthreshold =
θ
(
e2td/τ − 1

)
1 + 1

δ + etd/τ
(A.32)

Variable step, self-inhibition

TA
1 = τ ln

[
1 + α

θ + α

(
(1− δ)2 + δ(1− δ)etd/τ + δe(tEL+td)/τ

)]
(A.33)

TA
2 = τ ln

[
1
θ

(
(1− δ)2 + δ(1− δ)etd/τ + δe(td−tEL)/τ

)]
(A.34)

tEL = τ ln

[
1

2θ(1 + α)

(
α(1− θ)(1− δ)

(
1− δ

δ
e−td/τ + 1

)

+

[(
α(1− θ)(1− δ)

(
1− δ

δ
e−td/τ + 1

))2

+ 4θ(1 + α)(θ + α)

] 1
2
)]

(A.35)

αthreshold =
θ
(
e2td/τ − 1

)
1 + (1− δ)(1− θ)(etd/τ + 1+δ

δ − θe2td/τ
(A.36)

Type B firing
Constant step, no self-inhibition

TB
1 = TA

1 (A.37)

TB
2 = τ ln

[
1

θ − δ(1− θ)e(td−tEL)/τ

]
(A.38)

tEL = τ ln

[
1
2θ

(
α

δ
e−td/τ + δ(1− θ)etd/τ +

[(α

δ
e−td/τ + δ(1− θ)etd/τ

)2

+ 4θ(1 + α)
] 1

2
)]

(A.39)

αthreshold =
1

2
(

1
δ + e2td

)(θ

(
1− 1

δ

)
− e2td/τ (2θ + δ(1− θ))

+

[(
θ

(
1− 1

δ

)
− e2td/τ (2θ + δ(1− θ))

)2

+4θ

(
1
δ

+ e2td/τ

)(
1− (δ − δθ + θ) e2td/τ

)] 1
2
)

(A.40)

Variable step, no self-inhibition
TB

1 = TA
1 (A.41)

TB
2 = τ ln

[
1− δ

θ − δe(td−tEL)/τ

]
(A.42)
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tEL = τ ln

[
1
2θ

(
α(1− δ)(1− θ)e−td/τ

δ(1 + α)
+ δetd/τ

+
[(α(1− δ)(1− θ)e−td/τ

δ(1 + α)
+ δetd/τ

)2

+ 4θ(1− δ)
] 1

2
)]

(A.43)

αthreshold =
1

2
(
θ − (1−δ)(1−θ)

δ − e2td/τ
) (θ(1− θ)(1− δ)

δ
+ (δ(1− θ) + 2θ) e2td/τ − 2θ

−

[(
θ(1− θ)(1− δ)

δ
+ (δ(1− θ) + 2θ) e2td/τ − 2θ

)2

− 4θ

(
θ − (1− δ)(1− θ)

δ
− e2td/τ

)(
1− (δ(1− θ)) e2td/τ

)] 1
2
)

(A.44)

Variable step, self-inhibition
TB

1 = TA
1 (A.45)

TB
2 = τ ln

[
(1− δ)

[(
1− e−td/τ

)
(1− δ)− 1

]
δe−tEL/τ − θet−D/τ

]
(A.46)

tEL = τ ln
[

1
2θ

(
α(1− δ)(1− θ)

1 + α

(
1− δ

δ
e−td/τ + 1

)
+ δetd/τ

+

[(
α(1− δ)(1− θ)

1 + α

(
1− δ

δ
e−td/τ + 1

)
+ δetd/τ

)2

+ 4θ(1− δ)
(
1− δ + δetd/τ

)] 1
2
 (A.47)
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Program listings

Note that some lines have been split to fit on the page.

B.1 Mitral cell model

// mitral.tem

// Template for mitral cell model

// Andrew Davison, The Babaraham Institute

// 25th June 1999

begintemplate Mit

public soma, glom, prim, dend, AMPA, GABAA, spiketest,

spiketimes, spikecount, lastspikecount

create soma, glom, prim, dend, s2d, s2p, p2g

objref AMPA, GABAA, spikecount, spiketimes

proc init() { local Len, Erest, RM, p, q, r, Atotal, gsp, gsd, gpg,

AMPAtau, AMPArev, GABAAtau, GABAArev

create soma, glom, prim, dend, s2d, s2p, p2g

spiketimes = new Vector()

lastspikecount = 0

Len = 100

RM = 100000

Erest = -65 // mV

Atotal = 100000 // um2

gsp = 5.47e-11 // S/cm2

gpg = 5.86e-11

gsd = 1.94e-10

RM = 100000 // ohm.cm2

p = 0.051

q = 0.084

r = 0.328

AMPAtau = 10 // ms

AMPArev = 0 // mV

GABAAtau = 18 // from Sc&98

GABAArev = -70

soma {

insert pas

insert nafast

insert kfasttab

insert kslowtab

insert kA

insert kca3

insert lcafixed

insert cad

depth_cad = 8

L = Len

diam = p*Atotal/(PI*Len)

Ra = PI*diam*diam/(4*Len*Atotal)

e_pas = Erest // mV

g_pas = 1/RM // S/cm2

gnabar_nafast = 0.1532

gkbar_kfasttab = 0.1956

gkbar_kslowtab = 0.0028

gkbar_kA = 0.00587

gkbar_kca3 = 0.0142

gcabar_lcafixed = 0.0040

spikecount = new APCount(0.5)

spikecount.thresh = -30

}

glom {

insert pas

insert kslowtab

insert lcafixed

insert cad

L = Len

diam = q*Atotal/(PI*Len)

Ra = PI*diam*diam/(4*Len*Atotal)

e_pas = Erest

g_pas = 1/RM

gkbar_kslowtab = 0.02

gcabar_lcafixed = 0.0095

AMPA = new ExpSyn(0.5)

AMPA.tau = AMPAtau

AMPA.e = AMPArev

}

prim {

insert pas

insert nafast

insert kfasttab

insert kslowtab

insert lcafixed

insert cad

depth_cad = 8

L = Len

diam = r*Atotal/(PI*Len)

Ra = PI*diam*diam/(4*Len*Atotal)

e_pas = Erest

g_pas = 1/RM

gkbar_kfasttab = 0.00123

gnabar_nafast = 0.00134

gkbar_kslowtab = 0.00174

gcabar_lcafixed = 0.0022

}

dend {

insert pas

insert kfasttab

insert nafast

L = Len

diam = (1-p-q-r)*Atotal/(PI*Len)

Ra = PI*diam*diam/(4*Len*Atotal)

e_pas = Erest

g_pas = 1/RM

gkbar_kfasttab = 0.0330

gnabar_nafast = 0.0226

GABAA = new ExpSyn(0.5)

GABAA.tau = GABAAtau

GABAA.e = GABAArev

}

s2d {

diam = 1

Ra = PI*diam*diam/(4*Len*Atotal) * ( 1/gsd )

L = 1

}

s2p {

diam = 1

Ra = PI*diam*diam/(4*Len*Atotal) * ( 1/gsp )

L = 1

}

p2g {

diam = 1

Ra = PI*diam*diam/(4*Len*Atotal) * ( 1/gpg )

L = 1

}

soma connect s2p(0),0

s2p connect prim(0),1

prim connect p2g(0),1

p2g connect glom(0),1

soma connect s2d(0),1

s2d connect dend(0),1
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// set reversal potentials, etc.

forall if (ismembrane("ca_ion")) {

eca = 70 // mV

cai = 0.00001 // mM

cao = 2 // mM

ion_style("ca_ion",3,2,0,0,1)

}

forall if (ismembrane("na_ion")) {

ena = 45 // mV

}

forall if (ismembrane("k_ion")) {

ek = -70 // mV

}

}

proc spiketest() {

if (spikecount.n > lastspikecount) { // check for spike occurring

spiketimes.append(spikecount.time)

lastspikecount = spikecount.n

}

}

endtemplate Mit

2

B.2 Granule cell model

// granule.tem

// Template for granule cell model

// Andrew Davison, The Babraham Institute

// 25th June 1999

// NMDA synapse added 15th April 2000

// Synaptic parameters changed 6th September 2000

begintemplate Gran

public soma, periph, deep, AMPAr, NMDAr, spiketest,

spiketimes, spikecount, lastspikecount

create soma, periph, deep, s2d, s2p

objref AMPAr, NMDAr, spiketimes, spikecount

proc init() { local Len, Erest, RM, p, q, Atotal, gsp, gsd, AMPAtau,

NMDAalpha, NMDAbeta, Erev, rsd, rsp

create soma, periph, deep, s2d, s2p

spiketimes = new Vector()

lastspikecount = 0

Erest = -65 // mV

Atotal = 8353 // um2

gsp = 3.08e-10 // S/cm2

gsd = 4.34e-10

RM = 120000 // ohm.cm2

Len = 50

p = 0.0136

q = 0.308

rsd = 1/(gsd*Atotal)

rsp = 1/(gsp*Atotal)

NMDAalpha = 0.0163 // ms-1 }

NMDAbeta = 0.00292 // ms-1 } from Sc&98

AMPAtau = 5.5 // ms

Erev = 0 // mV

soma {

L = Len

diam = p*Atotal/(PI*Len)

Ra = PI*diam*diam/(4*Len*Atotal)

insert pas

e_pas = Erest // mV

g_pas = 1/RM // S/cm2 ( = 120000 ohm/cm^2)

insert nagrantab

insert kslowtab

insert kM

insert kA

gnabar_nagrantab = 0.1611 // siemen-cm^-2

gkbar_kslowtab = 0.1313

gkbar_kM = 0.1334

gkbar_kA = 0.0088

}

periph {

L = Len

diam = q*Atotal/(PI*Len)

Ra = PI*diam*diam/(4*Len*Atotal)

insert pas

e_pas = Erest

g_pas = 1/RM

insert nagrantab

insert kslowtab

gnabar_nagrantab = 0.1355

gkbar_kslowtab = 0.0243

AMPAr = new ExpSyn(0.5)

AMPAr.tau = AMPAtau

AMPAr.e = Erev

NMDAr = new NMDA(0.5)

NMDAr.Alpha = NMDAalpha

NMDAr.Beta = NMDAbeta

NMDAr.e = Erev

spikecount = new APCount(0.5)

spikecount.thresh = -30

}

deep {

L = Len

diam = (1-p-q)*Atotal/(PI*Len)

Ra = PI*diam*diam/(4*Len*Atotal)

insert pas

e_pas = Erest

g_pas = 1/RM

}

s2d {

diam = 1

Ra = PI*diam*diam/(4*Len*Atotal) * ( 1/gsd )

L = 1

}

s2p {

diam = 1

Ra = PI*diam*diam/(4*Len*Atotal) * ( 1/gsp )

L = 1

}

soma connect s2p(0), 0

s2p connect periph(0), 1

soma connect s2d(0), 1

s2d connect deep(0), 1

// set reversal potentials, etc.

forall if (ismembrane("na_ion")) {

ena = 45 // mV

}

forall if (ismembrane("k_ion")) {

ek = -70 // mV

}

}

proc spiketest() {

if (spikecount.n > lastspikecount) { // check for spike occurring

spiketimes.append(spikecount.time)

lastspikecount = spikecount.n

}

}

endtemplate Gran

2

B.3 Olfactory bulb network model

// bulb.hoc

// Olfactory bulb network model

// Andrew Davison, The Babraham Institute

// 14th May 2000, 24th May 2000, 25th August 2000

// ========================================================================

// == A. Parameters =======================================================

// ========================================================================

nmitx = 6

nmity = 6

nglom = nmitx*nmity

g2m = 12

ngranx = nmitx*g2m

ngrany = nmity*g2m

mitsep = 1

gransep = mitsep/g2m

seed = 0

rmax = ngranx*0.5

synpermit = 500

thresh = -10 // mV
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edelay = 1.8 // ms

conducdel = 0

idelay = 0.6 // ms (from MoTa78)

AMPAweight = 1e-3 // } based

NMDAweight = 7e-4 // uS } on

iweight = 6e-4 // } Sc&98

risetime = 30 // ms approx. rise time of NMDA EPSC from Sc&98

mgconc = 1 // mM

maxinput = 1.5

nof = 10 // number of ‘odour features’

// ========================================================================

// == B. Initialisation ===================================================

// ========================================================================

xopen("$(NEURONHOME)/lib/hoc/noload.hoc") // standard run tools

xopen("grantabchannels.hoc") // data for channel tables

xopen("mitral.tem") // mitral cell template

xopen("granule.tem") // granule cell template

xopen("mymaths.hoc") // miscellaneous maths

// procedures and functions

objref cvode

cvode = new CVode(0) // start with CVode inactive

objref random

random = new Random(seed)

objref mit[nmitx][nmity]

objref gran[ngranx][ngrany]

objref m2gAMPAlist, m2gNMDAlist, g2mlist

m2gAMPAlist = new List()

m2gNMDAlist = new List()

g2mlist = new List()

objref input[nmitx][nmity], inputarray, outputarray

inputarray = new Matrix(nmitx,nmity)

outputarray = new Matrix(nmitx,nmity)

objref isi, lags

isi = new Vector()

lags = new Vector()

objref outfile

outfile = new File()

strdef filename, fileroot, odourfile, inputfile

objref work, work2

work = new Vector()

work2 = new Vector()

objref hist

objref odour

odour = new Vector(nof)

// ========================================================================

// == C. Procedures =======================================================

// ========================================================================

// C.1. Create cells, specify co-ordinates, set cell parameters -----------

proc create_cells() { local i,j

printf("<<< Creating cells ...")

for i = 0, nmitx-1 {

for j = 0, nmity-1 {

mit[i][j] = new Mit()

mit[i][j].position(i*mitsep,j*mitsep)

}

}

for i = 0, ngranx-1 {

for j = 0, ngrany-1 {

gran[i][j] = new Gran()

gran[i][j].position(i*gransep,j*gransep)

}

}

access mit[0][0].soma

printf(" Cells created >>>\n")

}

// C.2. Connect cells, set synaptic parameters ----------------------------

func wrap() {

if ($1 < 0) {

return $2+$1

} else {

if ($1 < $2) {

return $1

} else {

return $1-$2

}

}

}

proc connect_cells() { local i,j,phi,r,ii,jj,dg,edel

// 2 arguments - dg, fileroot

dg = $1 // "different glomeruli"

printf("<<< Connecting cells ...")

m2gAMPAlist.remove_all()

m2gNMDAlist.remove_all()

g2mlist.remove_all()

sprint(filename,"%s.connect",$s2)

outfile.wopen(filename)

// Note: here it is possible for a mitral cell to have more than one

// synaptic contact with any particular granule cell.

for i = 0, nmitx-1 {

for j = 0, nmity-1 {

for k = 1, synpermit {

phi = random.uniform(0,2*PI)

r = random.uniform(0,rmax)

x = dg*i*g2m + r*sin(phi)

y = dg*j*g2m + r*cos(phi)

ii = wrap( nint(x),ngranx )

jj = wrap( nint(y),ngrany )

outfile.printf("%d %d\n%5.1f %5.1f %d %d\n\n",

dg*i*g2m,dg*j*g2m,x,y,ii,jj)

edel = edelay + r/rmax*conducdel

mit[i][j].dend m2gAMPAlist.append( new NetCon(&v(0.5),

gran[ii][jj].AMPAr,thresh,edel,AMPAweight) )

mit[i][j].dend m2gNMDAlist.append( new NetCon(&v(0.5),

gran[ii][jj].NMDAr,thresh,edel,NMDAweight) )

gran[ii][jj].periph g2mlist.append( new NetCon(&v(0.5),

mit[i][j].GABAA,thresh,idelay,iweight) )

}

}

}

outfile.close()

printf(" Cells connected >>>\n")

}

proc set_GABAA_weights() { local i // 1 argument - weight

for i = 0,g2mlist.count()-1 {

g2mlist.object(i).weight = $1

}

}

proc set_AMPA_weights() { local i // 1 argument - weight

for i = 0,m2gAMPAlist.count()-1 {

m2gAMPAlist.object(i).weight = $1

}

}

proc set_NMDA_weights() { local i // 1 argument - weight

for i = 0,m2gNMDAlist.count()-1 {

m2gNMDAlist.object(i).weight = $1

}

}

// C.3. Specify inputs ----------------------------------------------------

proc insert_iclamps() { local i,j // 2 arguments - del, dur

// if $1 is negative, delay is randomly chosen

// in the uniform interval 0,$1

for i = 0, nmitx-1 {

for j = 0, nmity-1 {

mit[i][j].glom input[i][j] = new IClamp(0.5)

input[i][j].dur = $2

input[i][j].del = abs($1)

}

}

random.uniform(0,abs($1))

if ($1 < 0) {

for i = 0, nmitx-1 {

for j = 0, nmity-1 {

input[i][j].del = random.repick()

}

}

}

}

proc set_no_input() { local i,j

for i = 0, nmitx-1 {

for j = 0, nmity-1 {

inputarray.x[i][j] = 0.0

input[i][j].amp = inputarray.x[i][j]

}

}

}

// Odour input

objref A, X, S

proc generate_odour_matrix() { local i,j,r,ix,iy,k,l,min,max

A = new Matrix(nglom,nof) // A is set here and should

// not be changed elsewhere

S = new Matrix(nmitx,nmity) // X and S are local

X = new Vector(nglom) // matrices

r = random.normal(0.0,0.5)

// Generate original matrix

for i = 0,nglom-1 for j = 0,nof-1 {

r = random.repick()

if (r < 0) {r = 0}

A.x[i][j] = r

}

// Average to obtain similar responses of nearby glomeruli

blur = 2

for j = 0,nof-1 {

X = A.getcol(j)

for ix = 0,nmitx-1 for iy = 0,nmity-1 {

S.x[ix][iy] = X.x[ix*nmity+iy]

}

for ix = 0,nmitx-1 for iy = 0,nmity-1 {

X.x[ix*nmity+iy] = 0

for k = -1,1 for l = -1,1 {

kx = mod(ix+k,nmitx)

ly = mod(iy+l,nmity)

X.x[ix*nmity+iy] += ( S.x[kx][ly] * exp(-blur*sqrt(k^2+l^2)) )

}

}

A.setcol(j,X)

}

max = arraymax(A)

min = arraymin(A)

print "min, max ",min,max

for i=0,nglom-1 for j=0,nof-1 {

A.x[i][j] += -min

}

A.muls(1/(max-min))
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}

proc read_odour_file() { local i // 1 argument - id number of odour

sprint(odourfile,"odour%d",$1)

ropen(odourfile)

for i = 0,nof-1 {

odour.x[i] = fscan()

}

ropen()

printf("Odour %d loaded:\n",$1)

odour.printf("%6.3f")

}

proc map_odour_to_input() { local i,j

// 2 arguments - odour vector and odour intensity

X = A.mulv($o1)

for i = 0, nmitx-1 {

for j = 0, nmity-1 {

inputarray.x[i][j] += $2 * X.x[i*nmity+j]

input[i][j].amp = inputarray.x[i][j]

}

}

}

// C.4. Procedures for processing spike times and writing out data --------

xopen("calcisilag.hoc")

proc print_params() { // 1 argument - filename

sprint(filename,"%s.param",$s1)

outfile.wopen(filename)

outfile.printf("nmitx: %d\n",nmitx)

outfile.printf("nmity: %d\n",nmity)

outfile.printf("g2m: %d\n",g2m)

outfile.printf("mitsep: %5.1f\n",mitsep)

outfile.printf("gransep: %5.1f\n",gransep)

outfile.printf("seed: %d\n",seed)

outfile.printf("rmax: %5.1f\n",rmax)

outfile.printf("synpermit: %d\n",synpermit)

outfile.printf("thresh: %7.1f\n",thresh)

outfile.printf("edelay: %7.1f\n",edelay)

outfile.printf("conducdel: %7.1f\n",conducdel)

outfile.printf("idelay: %7.1f\n",idelay)

outfile.printf("AMPAweight: %9.3g\n",AMPAweight)

outfile.printf("NMDAweight: %9.3g\n",NMDAweight)

outfile.printf("iweight: %9.3g\n",iweight)

outfile.printf("maxinput: %9.3g\n",maxinput)

outfile.printf("tstop: %9.1g\n",tstop)

outfile.printf("ttrans: %9.1g\n",ttrans)

outfile.printf("rtol: %7.1g\n",cvode.rtol())

outfile.printf("atol: %7.1g\n",cvode.atol())

outfile.printf("cvode: %d\n",cvode.active())

outfile.printf("local: %d\n",cvode.use_local_dt())

outfile.printf("risetime: %7.1f\n",risetime)

outfile.printf("mgconc: %8.2g\n",mgconc)

outfile.close()

}

// C.5. Procedures for running the model ----------------------------------

proc random_init() { local i,j

random.normal(-65,25)

for i = 0,nmitx-1 {

for j = 0, nmity-1 {

mit[i][j].soma.v(0.5) = random.repick()

mit[i][j].dend.v(0.5) = mit[i][j].soma.v(0.5)

mit[i][j].prim.v(0.5) = mit[i][j].soma.v(0.5)

mit[i][j].glom.v(0.5) = mit[i][j].soma.v(0.5)

}

}

for i = 0,ngranx-1 {

for j = 0, ngrany-1 {

gran[i][j].soma.v(0.5) = random.repick()

gran[i][j].deep.v(0.5) = gran[i][j].soma.v(0.5)

gran[i][j].periph.v(0.5) = gran[i][j].soma.v(0.5)

}

}

}

proc advance() { local i,j

fadvance()

for i = 0,nmitx-1 {

for j = 0,nmity-1 {

mit[i][j].spiketest()

}

}

for (i = 0; i <= ngranx-1; i+=1) { // testing for granule cell spikes

for (j = 0; j <= ngrany-1; j+=1) { // seems to slow the simulation

gran[i][j].spiketest() // way down, so comment this

} // out for faster running.

}

}

// ========================================================================

// == D. Running the model ================================================

// ========================================================================

// D.1. Set numerical parameters ------------------------------------------

tstop = 3000 // ms

ttrans = 1000 // ms - ignore spikes before this time

cvode.rtol(0)

cvode.atol(1e-2)

cvode.active(1)

cvode.use_local_dt(1)

// D.2. Set or read-in model parameters -----------------------------------

Cdur_NMDA = risetime

mg_NMDA = mgconc

sprint(fileroot,"bulbdata001")

printf("Filename: %s\n",fileroot)

// D.3. Initialise the model ----------------------------------------------

create_cells()

connect_cells(1,fileroot) // 1=different glomeruli

insert_iclamps(-200,tstop)

generate_odour_matrix()

set_no_input()

read_odour_file(1) // read in odour #1

map_odour_to_input(odour,maxinput)

set_AMPA_weights(AMPAweight)

set_NMDA_weights(NMDAweight)

set_GABAA_weights(iweight)

print_params(fileroot)

// D.4. Run the model -----------------------------------------------------

startsw()

init()

random_init()

print "<<< Starting run >>>"

while (t < tstop) {

advance()

}

print "Time: ",stopsw()

// D.5. Print-out results -------------------------------------------------

print_raster(fileroot)

print_gran_raster(fileroot)

print_smooth_hist(minisi()/4,fileroot)

print_gran_smooth_hist(minisi()/4,fileroot)

print_isi_stats(fileroot)

print_si(fileroot,0)

// calcisilag.hoc

// Opened by bulb.hoc

// Procedures for calculating interspike interval and

// time lag statistics and printing them out

// Andrew Davison, The Babraham Institute

// 7th September 2000

// Procedures for processing spike times ----------------------------------

proc calc_isis() { local i,j,k,n

// 3 arguments - indices of mitral cell, transient time

if ($1 > nmitx || $2 > nmity) {

print "Sorry - index out of range. Please try again."

return

}

i = int($1)

j = int($2)

isi.resize(0)

n = mit[i][j].spiketimes.size()

if (n > 1) {

for k = 1,n-1 {

if (mit[i][j].spiketimes.x[k-1] > $3) {

isi.append(mit[i][j].spiketimes.x[k]-mit[i][j].spiketimes.x[k-1])

}

}

}

}

proc calc_gran_isis() { local i,j,k,n

// 3 arguments - indices of granule cell, transient time

if ($1 > ngranx || $2 > ngrany) {

print "Sorry - index out of range. Please try again."

return

}

i = int($1)

j = int($2)

isi.resize(0)

n = gran[i][j].spiketimes.size()

if (n > 1) {

for k = 1,n-1 {

if (gran[i][j].spiketimes.x[k-1] > $3) {

isi.append(gran[i][j].spiketimes.x[k]-gran[i][j].spiketimes.x[k-1])

}

}

}

}

proc calc_phase_lags() { local i1,j1,i2,j2,k,minidx,min

// 5 arguments - indices of mitral cells, transient time

if ($1 > nmitx || $2 > nmity || $3 > nmitx || $4 > nmity) {

print "Sorry - index out of range. Please try again."

return

}

i1 = int($1)

j1 = int($2)

i2 = int($3)

j2 = int($4)

lags.resize(0)

// for each spiketime in cell 1, find closest spike in cell 2

// Note: first and last spikes ignored since can’t calculate previous ISI

if (mit[i2][j2].spiketimes.size > 0) {
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for k = 1,mit[i1][j1].spiketimes.size()-2 {

if (mit[i1][j1].spiketimes.x[k] > $5) {

work = mit[i2][j2].spiketimes.c.add(-mit[i1][j1].spiketimes.x[k])

minidx = work.c.abs.min_ind()

min = work.x[minidx]

isiprev = mit[i1][j1].spiketimes.x[k-1]-mit[i1][j1].spiketimes.x[k]

isinext = mit[i1][j1].spiketimes.x[k+1]-mit[i1][j1].spiketimes.x[k]

if (min > isiprev/2 && min < isinext/2) {

if (min < 0) {

lags.append(min/isiprev)

} else {

lags.append(min/isinext)

}

}

}

}

}

}

proc time_hist() { local i,j // 1 argument - time step

work.resize(0)

for i = 0, nmitx-1 {

for j = 0, nmity-1 {

work.append(mit[i][j].spiketimes)

}

}

hist = work.histogram(0,tstop,$1)

hist.printf("%d\n")

}

func synch_index2a() { local n,i1,j1,i2,j2

synchindex = 0

n = 0

for i1 = 0, nmitx-1 {

for j1 = 0, nmity-1 {

if (mit[i1][j1].spiketimes.size() > 0) {

for i2 = 0, nmitx-1 {

for j2 = 0, nmity-1 {

if (i1 != i2 || j1 != j2) {

calc_phase_lags(i1,j1,i2,j2,ttrans)

if (lags.size() > 1) {

synchindex += lags.var()

n += 1

}

}

}

}

}

}

}

synchindex = sqrt(synchindex/n)

return synchindex

}

func synch_index3a() { local i1,j1,i2,j2,n

synchindex = 0

n = 0

for i1 = 0, nmitx-1 {

for j1 = 0, nmity-1 {

if (mit[i1][j1].spiketimes.size() > 0) {

for i2 = 0, nmitx-1 {

for j2 = 0, nmity-1 {

if (i1 != i2 || j1 != j2) {

calc_phase_lags(i1,j1,i2,j2,ttrans)

n += lags.size()

synchindex += lags.reduce("abs",0)

}

}

}

}

}

}

return synchindex/n

}

// Procedures for writing out data -----------------------------------

proc print_smooth_hist() { local i,j

// 2 arguments - variance, filename root

work.resize(0)

for i = 0, nmitx-1 {

for j = 0, nmity-1 {

work.append(mit[i][j].spiketimes)

}

}

hist = work.sumgauss(0,tstop,1,$1)

sprint(filename,"%s.smhist",$s2)

outfile.wopen(filename)

outfile.printf("# Mitral cell smoothed histogram\n")

hist.printf(outfile,"%8.3f\n")

outfile.close()

work.resize(0)

hist.remove(0,ttrans)

work.spctrm(hist)

sprint(filename,"%s.pow",$s2)

outfile.wopen(filename)

outfile.printf("# Power spectrum of Mitral cell smoothed histogram\n")

work.printf(outfile,"%9.5f\n")

outfile.close()

}

proc print_gran_smooth_hist() { local i,j

// 2 arguments - variance, filename root

work.resize(0)

for i = 0, ngranx-1 {

for j = 0, ngrany-1 {

work.append(gran[i][j].spiketimes)

}

}

hist = work.sumgauss(0,tstop,1,$1)

sprint(filename,"%s.gran.smhist",$s2)

outfile.wopen(filename)

outfile.printf("# Granule cell smoothed histogram\n")

hist.printf(outfile,"%8.3f\n")

outfile.close()

work.resize(0)

hist.remove(0,ttrans)

work.spctrm(hist)

sprint(filename,"%s.gran.pow",$s2)

outfile.wopen(filename)

outfile.printf("# Power spectrum of Granule cell smoothed histogram\n")

work.printf(outfile,"%9.5f\n")

outfile.close()

}

proc print_raster() { local i,j,k // 1 argument - filename root

sprint(filename,"%s.ras",$s1)

outfile.wopen(filename)

outfile.printf("# Mitral cell raster plot\n")

for i = 0, nmitx-1 {

for j = 0, nmity-1 {

for k = 0, mit[i][j].spiketimes.size()-1 {

outfile.printf("%d %d %d %10.3f\n",i,j,

i*nmity+j,mit[i][j].spiketimes.x[k])

}

}

}

outfile.close()

}

proc print_gran_raster() { local i,j,k // 1 argument - filename root

sprint(filename,"%s.gran.ras",$s1)

outfile.wopen(filename)

outfile.printf("# Granule cell raster plot\n")

for i = 0, ngranx-1 {

for j = 0, ngrany-1 {

for k = 0, gran[i][j].spiketimes.size()-1 {

outfile.printf("%d %d %d %10.3f\n",i,j,

i*ngrany+j,gran[i][j].spiketimes.x[k])

}

}

}

outfile.close()

}

proc print_isi_stats() { local i,j // 1 argument - filename root

sprint(filename,"%s.stats",$s1)

outfile.wopen(filename)

outfile.printf("#Interspike interval statistics for mitral cells\n")

outfile.printf("# i j n mean median stdev \n")

for i = 0, nmitx-1 {

for j = 0, nmity-1 {

calc_isis(i,j,ttrans)

outfile.printf("%3d%3d%4d",i,j,isi.size())

if (isi.size() > 0) {

outfile.printf("%8.2f%8.2f",isi.mean(),isi.median())

if (isi.size() > 1) {

outfile.printf("%8.2f\n",isi.stdev())

}

} else { outfile.printf("\n") }

}

}

outfile.printf("#Interspike interval statistics for granule cells\n")

outfile.printf("# i j n mean median stdev \n")

for i = 0, ngranx-1 {

for j = 0, ngrany-1 {

calc_gran_isis(i,j,ttrans)

outfile.printf("%3d%3d%4d",i,j,isi.size())

if (isi.size() > 0) {

outfile.printf("%8.2f%8.2f",isi.mean(),isi.median())

if (isi.size() > 1) {

outfile.printf("%8.2f\n",isi.stdev())

}

} else { outfile.printf("\n") }

}

}

outfile.close()

}

proc print_si() { // 1 argument - fileroot

print "<<< Calculating synchronization indices >>>"

sprint(filename,"%s.synch",$s1)

outfile.wopen(filename)

outfile.printf("Phase-locking index: %10.5f\n",synch_index2a())

outfile.printf("Synchronization index: %10.5f\n",synch_index3a())

outfile.close()

}
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[16] Bonino, M., Cantino, D. and Sassoè-Pognetto, M. (1999). Cellular and subcellular localiza-
tion of γ-aminobutyric acidB receptors in the rat olfactory bulb. Neuroscience Letters 274:195–198.

[17] Brennan, P. A. and Keverne, E. B. (1997). Neural mechanisms of mammalian olfactory
learning. Progess in Neurobiology 51:457–481.

[18] Buck, L. B. (1996). Information coding in the vertebrate olfactory system. Annual Review of
Neuroscience 19:517–544.

[19] Buck, L. B. and Axel, R. (1991). A novel multigene family may encode odorant receptors: a
molecular basis for odor recognition. Cell 65:175–187.

[20] Buonviso, N., Chaput, M. A. and Berthommier, F. (1992). Temporal pattern analyses in
pairs of neighboring mitral cells. Journal of Neurophysiology 68:417–424.

[21] Buonviso, N., Chaput, M. A. and Scott, J. W. (1991). Mitral cell-to-glomerulus connectivity
- an HRP study of the orientation of mitral cell apical dendrites. Journal of Comparative Neurology
307:57–64.

[22] Bush, P. C. and Sejnowski, T. J. (1993). Reduced compartmental models of neocortical
pyramidal cells. Journal of Neuroscience Methods 46:159–166.

[23] Castillo, P. E., Carleton, A., Vincent, J. D. and Lledo, P. M. (1999). Multiple and
opposing roles of cholinergic transmission in the main olfactory bulb. Journal of Neuroscience
19:9180–9191.

[24] Chen, W. R., Midtgaard, J. and Shepherd, G. M. (1997). Forward and backward propagation
of dendritic impulses and their synaptic control in mitral cells. Science 278:463–467.

[25] Chen, W. R. and Shepherd, G. M. (1997). Membrane and synaptic properties of mitral cells
in slices of rat olfactory bulb. Brain Research 745:189–196.

[26] Chen, W. R., Xiong, W. and Shepherd, G. M. (2000). Analysis of relations between NMDA
receptors and GABA release at olfactory bulb reciprocal synapses. Neuron 25:625–633.

[27] Chow, C. C. (1998). Phase-locking in weakly heterogeneous neuronal networks. Physica D
118:343–370.

[28] Ciombor, K. J., Ennis, M. and Shipley, M. T. (1999). Norepinephrine increases rat mitral
cell excitatory responses to weak olfactory nerve input via alpha-1 receptors in vitro. Neuroscience
90:595–606.

[29] Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J. and Carlson, J. R.
(1999). A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in
Drosophila. Neuron 22:327–338.

[30] Coombes, S. (1999). Liapunov exponents and mode-locked solutions for integrate-and-fire dynam-
ical systems. Physics Letters A 255:49–57.

[31] Coombes, S. and Bressloff, P. C. (1999). Mode-locking and Arnold tongues in integrate-and-
fire neural oscillators. Physical Review E 60:2086–2096.

[32] Davison, A. P., Feng, J. and Brown, D. (2000). A reduced compartmental model of the mitral
cell for use in network models of the olfactory bulb. Brain Research Bulletin 51:393–399.



REFERENCES 123

[33] Desmaisons, D., Vincent, J. D. and Lledo, P. M. (1999). Control of action potential timing
by intrinsic subthreshold oscillations in olfactory bulb output neurons. Journal of Neuroscience
19:10727–10737.

[34] Destexhe, A., Mainen, Z. F. and Sejnowski, T. J. (1994). An efficient method for computing
synaptic conductances based on a kinetic model of receptor binding. Neural Computation 6:14–18.

[35] Destexhe, A., Mainen, Z. F. and Sejnowski, T. J. (1998). Kinetic models of synaptic
transmission. In: C. Koch and I. Segev (editors), Methods in Neuronal Modeling: From Ions to
Networks, pp. 1–25. MIT Press, Cambridge, Massachusetts, 2nd edition.

[36] Dodd, J. and Castellucci, V. F. (1991). Smell and taste: The chemical senses. In: E. R.
Kandel, J. H. Schwartz and T. M. Jessel (editors), Principles of Neural Science, chapter 34, pp.
512–529. Appleton and Lange, East Norwalk, Connecticut, 3rd edition.

[37] Dorries, K. M. and Kauer, J. S. (2000). Relationships between odor-elicited oscillations in the
salamander olfactory epithelium and olfactory bulb. Journal of Neurophysiology 83:754–765.

[38] Dryer, L. and Graziadei, P. P. C. (1994). Mitral cell dendrites – a comparative approach.
Anatomy and Embryology 189:91–106.

[39] Duchamp-Viret, P., Duchamp, A. and Chaput, M. A. (2000). Peripheral odor coding in the
rat and frog: quality and intensity specification. Journal of Neuroscience 20:2383–2390.

[40] Eisthen, H. L. (1997). Evolution of vertebrate olfactory systems. Brain, Behaviour and Evolution
50:222–233.

[41] Ennis, M., Zimmer, L. A. and Shipley, M. T. (1996). Olfactory nerve-stimulation activates
rat mitral cells via NMDA and non-NMDA receptors in-vitro. NeuroReport 7:989–992.

[42] Ezeh, P. I., Wellis, D. P. and Scott, J. W. (1993). Organization of inhibition in the rat
olfactory bulb external plexiform layer. Journal of Neurophysiology 70:263–274.

[43] Fischer, T. and Zippel, H. P. (1989). The effects of cryogenic blockade of the centrifugal,
bulbopetal pathways on the dynamic and static response characteristics of goldfish olfactory-bulb
mitral cells. Experimental Brain Research 75:390–400.

[44] Friedrich, R. W. and Korsching, S. I. (1997). Combinatorial and chemotopic odorant coding
in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18:737–752.

[45] Friedrich, R. W. and Korsching, S. I. (1998). Chemotopic, combinatorial and noncombina-
torial odorant representations in the olfactory bulb revealed using a voltage-sensitive axon tracer.
The Journal of Neuroscience 18:9977–9988.

[46] Gerstner, W., van Hemmen, J. L. and Cowan, J. D. (1996). What matters in neuronal
locking? Neural Computation 8:1653–1676.

[47] Greer, C. A. (1987). Golgi analyses of dendritic organization among denervated olfactory-bulb
granule cells. Journal of Comparative Neurology 257:442–452.

[48] Guthrie, K. M., Anderson, A. J., Leon, M. and Gall, C. (1993). Odor-induced increases
in c-fos mRNA expression reveal an anatomical “unit” for odor processing in olfactory bulb. Pro-
ceedings of the National Academy of Sciences of the USA 90:3329–3333.

[49] Halabisky, B., Friedman, D., Radojicic, M. and Strowbridge, B. W. (2000). Calcium in-
flux through NMDA receptors directly evokes GABA release in olfactory bulb granule cells. Journal
of Neuroscience 20:5124–5134.



124 REFERENCES

[50] Halász, N., Hökfelt, T., Norman, A. W. and Goldstein, M. (1985). Tyrosine hydroxylase
and 28k-vitamin D-dependent calcium binding protein are localized in different subpopulations of
periglomerular cells of the rat olfactory bulb. Neuroscience Letters 61:103–107.

[51] Hamilton, K. A. and Kauer, J. S. (1988). Responses of mitral/tufted cells to orthodromic
and antidromic electrical-stimulation in the olfactory bulb of the tiger salamander. Journal of
Neurophysiology 59:1736–1755.

[52] Hamilton, K. A. and Kauer, J. S. (1989). Patterns of intracellular potentials in salamander
mitral/tufted cells in response to odor stimulation. Journal of Neurophysiology 62:609–625.

[53] Harrison, T. A. and Scott, J. W. (1986). Olfactory bulb responses to odor stimulation:
analysis of response pattern and intensity relationships. Journal of Neurophysiology 56:1571–1589.

[54] Hendin, O., Horn, D. and Hopfield, J. J. (1994). Decomposition of a mixture of signals
in a model of the olfactory bulb. Proceedings of the National Academy of Sciences of the USA
91:5942–5946.

[55] Hendin, O., Horn, D. and Tsodyks, M. V. (1997). The role of inhibition in an associative
memory model of the olfactory bulb. Journal of Computational Neuroscience 4:173–182.

[56] Hendin, O., Horn, D. and Tsodyks, M. V. (1998). Associative memory and segmentation in an
oscillatory neural model of the olfactory bulb. Journal of Computational Neuroscience 5:157–169.

[57] Hinds, J. W. and McNelly, N. A. (1977). Aging of the rat olfactory bulb: growth and atrophy of
constituent layers and changes in size and number of mitral cells. Journal of Comparative Neurology
171:345–368.

[58] Hopfield, J. J. (1991). Olfactory computation and object perception. Proceedings of the National
Academy of Sciences of the USA 88:6462–6466.

[59] Hopfield, J. J. (1995). Pattern recognition computation using action potential timing for stimulus
representation. Nature 376:33–36.

[60] Hoshino, O., Kashimori, Y. and Kambara, T. (1998). An olfactory recognition model based on
spatiotemporal encoding of odor quality in the olfactory bulb. Biological Cybernetics 79:109–120.

[61] Imamura, K., Mataga, N. and Mori, K. (1992). Coding of odor molecules by mitral/tufted
cells in rabbit olfactory bulb. I. aliphatic compounds. Journal of Neurophysiology 68:1986–2002.

[62] Isaacson, J. S. (1999). Glutamate spillover mediates excitatory transmission in the rat olfactory
bulb. Neuron 23:377–384.

[63] Isaacson, J. S. and Strowbridge, B. W. (1998). Olfactory reciprocal synapses: dendritic
signalling in the CNS. Neuron 20:749–761.

[64] Jahr, C. E. and Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic
conductances predicted by single-channel kinetics. Journal of Neuroscience 10:3178–3182.

[65] Johnson, B. A. and Leon, M. (2000). Molecular representations of odorants in the glomerular
layer of the rat olfactory bulb and the effects of stimulus concentration. Journal of Comparative
Neurology 422:496–509.

[66] Johnson, B. A. and Leon, M. (2000). Odorant molecular length: one aspect of the olfactory
code. Journal of Comparative Neurology 426:330–338.

[67] Kashiwadani, H., Sasaki, Y. F., Uchida, N. and Mori, K. (1999). Synchronized oscillatory
discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory
bulb. Journal of Neurophysiology 82:1786–1792.



REFERENCES 125

[68] Kendrick, K. M., da Costa, A. P. C., Broad, K. D., Ohkura, S., Guevara, R., Lévy,
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