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Abstract

Given the complexity of biological neural
circuits and of their component cells and
synapses, building and simulating robust, well-
validated, detailed models increasingly sur-
passes the resources of an individual researcher
or small research group. In this article, I will
briefly review possible solutions to this prob-
lem, argue for open, collaborative modelling as
the optimal solution for advancing neuroscience
knowledge, and identify potential bottlenecks
and possible solutions.

Introduction

Biological nervous systems, from the entire
358-cell system of C. elegans to the human
brain, are very complex, with very many mov-
ing parts interacting in many ways. Under-
standing how brains or brain regions work will

require modelling these biological neuronal net-
works at many levels of abstraction and at
many spatial and temporal scales. In this arti-
cle I will focus on data-driven modelling with
a high level of detail, aimed at understand-
ing low-level mechanisms and how higher-order
properties arise from the interactions of indi-
vidual elements.

Given that we wish to model a complicated
structure with a very large number of elements,
that multiplexes a large number of different
computations within the same physical struc-
ture, whose properties are difficult to measure,
and yet about which there is a vast and rapidly
increasing experimental literature, is it possible
for an individual scientist or a small research
group to develop and simulate an accurate and
complete model of a brain region or other neu-
ronal network?

Until recently, almost all detailed modelling
studies of individual neurons and of neuronal
networks have been the work of individual re-
searchers and small teams, from the founda-
tional squid axon model of Hodgkin and Huxley
(1952) to the whole-brain simulations of Izhike-
vich and Edelman (2008). There have been ex-
ceptions to this rule, such as the “Eternal Purk-
inje Cell”, a model originally developed by De
Schutter and Bower (1994a,b) which has since
been refined, extended and incorporated into
network models in many laboratories, but even
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in these cases different research groups take the
original model in different directions, and such
changes are not generally merged together.

In the last few years, several projects have
emerged that take a more industrial approach
to neuronal modelling, assembling experimen-
tal biologists, computational neuroscientists,
computer scientists and professional program-
mers into large teams that attempt to model
neural circuits with tens of thousands of de-
tailed multicompartmental neurons and mil-
lions of synapses, and simulate these models
on supercomputers. The first of these was the
Blue Brain Project (Markram, 2006); the Allen
Institute for Brain Science and Brain Corpora-
tion have announced similar plans (Allen In-
stitute for Brain Science, 2012; Brain Corpo-
ration, 2012), while the Human Brain Project
is seeking funding to scale up the Blue Brain
Project’s cortical column model to whole-brain
models (Walker, 2012).

The need to assemble large teams to work col-
laboratively on a single model arises when the
size and complexity of a model passes a certain
threshold. Managing the data used to build
and test the model, simulating the model on
large clusters and supercomputers, managing
storage and analysis of output data, develop-
ing the software framework that links every-
thing together, all become large tasks in their
own right, and a division of labour is needed.

There are several ways in which to assem-
ble a team for collaborative modelling. One
is through formal, hierarchical structures such
as the Blue Brain Project or Allen Institute.
Most of neuroscience, however, is structured
into individual labs: is it possible for such
labs, through more informal collaborations,
to assemble the large teams necessary to de-
velop large-scale, detailed, data-driven models
of neural circuits?

The example of the open source software move-
ment suggests that it certainly is possible. A
huge amount of high quality software is now
developed by informal teams working on differ-
ent continents, working for different companies
or in their spare time, rarely or never meeting
in person but using assorted electronic meth-
ods of communication to structure their work.
In neuroscience, many scientists have started

to use the same approaches to develop scien-
tific software, initially mainly for tool develop-
ment but now also specifically for model de-
velopment. The OpenWorm project (http://
www.openworm.org/) is an informal, unfunded
collaboration of mostly junior scientists which
aims to develop a complete model of C. elegans
and has already made considerable progress.
The Open Source Brain Initiative (http://
www.opensourcebrain.org) is building a plat-
form dedicated to open, public, collabora-
tive development of neuroscience models, while
the well-established ModelDB database (Hines
et al., 2004) is adding support for models with
multiple versions, which develop over time.

Such initiatives are only in their infancy at
present. Whether or not they will succeed de-
pends both on solving technical problems and
on resolving a number of social issues related
to professional recognition and scientific career
structures. In the rest of this article, I will
review some of the technical requirements for
open, collaborative modelling before discussing
the social issues that must be addressed.

Technical considerations

From a technical perspective, collaborative
modelling has a number of requirements.

Interoperability between simulators
and/or common modelling languages
Given that collaborative network models
are likely to consist of multiple components
developed in different labs, it is unlikely that
they will all have been developed using a single
simulation environment or a single program-
ming language. One option is to convert all
components to run in a single simulation envi-
ronment, but this is likely to be extremely time
consuming, and must be repeated every time
a new simulator is used. Two better solutions,
which may be used separately or together, are
tools for simulator run-time communication
and tools for simulator-independent model and
experiment description.

If two or more simulators can be made to com-
municate the times of spike events and/or val-
ues of state variables during a simulation, it is
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possible to run each component in the environ-
ment for which it was originally developed and
avoid translation completely. This can be done
in an ad hoc fashion – advancing each simu-
lator for a small time interval, swapping data
via some mechanism such as the filesystem, and
then advancing again – or using a dedicated in-
terface library. The ad hoc approach is particu-
larly suitable when there is a large difference in
time scales between the two simulators. Exam-
ples of dedicated interfaces are MUSIC (Djur-
feldt et al., 2010) and PLATONIC (Kannon
et al., 2011). MUSIC, for example, takes care
of efficiently transmitting spike times and the
values of state variables between two or more
parallel simulators (or other tools such as visu-
alizers) while respecting the possibly different
time steps used in the different simulators.

Simulator-independent model descriptions al-
low a model to be developed without consider-
ing which simulator will be used to simulate
it. This has several advantages, in particu-
lar making it simple to run models on differ-
ent simulators and compare the results, and al-
lowing different labs, using different simulation
platforms, to collaborate on the same model.
There are two general approaches to simulator-
independent model descriptions. The first is
to use a declarative, XML-based language,
which can then be interpreted by a simula-
tor or used to generate simulator-specific code.
The main examples of this approach in com-
putational neuroscience are NeuroML (Glee-
son et al., 2010) and NineML (Raikov and the
INCF Multiscale Modeling Taskforce, 2010).
The second approach is to define a common ap-
plication programming interface (API) for neu-
ronal simulations and then to implement this
interface using the native programming lan-
guage of each simulator. The latter approach
is taken by PyNN (Davison et al., 2009).

Version control systems Collaborative
modelling implies that more than one person
will be contributing code to the model and
that the model will change over time. This
implies a need for merging (possibly conflict-
ing) contributions, having a unique identifier
for a particular version/snapshot of the code
and, probably, being able to identify who con-
tributed what. All of these functions are

provided by modern version control systems
(VCS), specifically those that support atomic
operations: this includes Subversion, Mercu-
rial, Git, Bazaar, Perforce, Darcs, Monotone,
etc. but excludes the once-popular CVS.

An important factor in choosing a VCS is
whether it is client-server (like Subversion) or
distributed (like Git, Mercurial). A client-
server system has a central server containing
the repository, with all the history of contribu-
tions and changes. Each developer has a copy
of the files, but does not have a copy of the
history. A commit or check-in (merging local
changes into the repository) always requires a
network connection. With a distributed sys-
tem, every developer has a copy of the entire
repository with all the history. A commit can
be done to the local repository without needing
a network connection. A network connection is
needed only when merging changes made to dif-
ferent copies of the repository. It is possible to
have a central server with the “definitive” copy
of the repository, or developers can work in an
entirely peer-to-peer manner.

For collaborative modelling, there is a clear
advantage to having a central, definitive copy
of the repository, in order to avoid the model
splintering into multiple, incompatible ver-
sions, each specific to one lab. Using a dis-
tributed VCS requires greater discipline from
developers to merge changes into the central
repository frequently, and hence does increase
the ease with which splintering into incompat-
ible versions can occur, while using a client-
server VCS requires the merges to be performed
at each check-in. However, the advantages of
using a distributed VCS (local commits, bet-
ter automated merging, easier set-up) outweigh
this single advantage of the client-server ap-
proach in most circumstances.

The final aspect to consider in the choice of a
VCS is tool support, in particular web-based
repository hosting. Of the most popular repos-
itory hosting platforms, Sourceforge (http://
sourceforge.net) supports Subversion, Git,
Mercurial, Bazaar and CVS, Google Code
(http://code.google.com) supports Subver-
sion, Mercurial and Git, Bitbucket (https://
bitbucket.org) supports Mercurial and Git,
GitHub (https://github.com) supports only
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Git.

Legal clarity Source code is protected by
copyright laws. Collaborative modelling there-
fore requires that all contributors explicitly de-
clare that other people are allowed to copy and
modify their code. The best way to do this
is to use a standard open-source licence for
source code, such as the GNU Public License
(GPL) or the Modified Berkeley Software Dis-
tribution (BSD) License. The Open Source
Initiative maintains a list of approved open
source licenses at http://www.opensource.
org/licenses/. The most important consid-
eration in choosing a licence is the distinction
between “copyleft” and “permissive” licences.
Copyleft means that modified versions of the
software must use the same licence, while per-
missive licences do not have such a require-
ment.

In the past, it has been rare for shared model
code to have an explicit licence - a large num-
ber of models in ModelDB, for example, have
no licence information, nor information about
allowed use of the code. In most of these cases,
the authors probably believe they are placing
the code in the public domain, but from a legal
point of view it is unlikely they have achieved
this aim.

A much more comprehensive study of the le-
gal framework for sharing scientific code is pre-
sented by Stodden (2009).

Communication tools Like other collab-
orative activities, collaborative modelling re-
quires good communication tools. In the age
of social media, it is hardly worthwhile to list
the currently most popular tools. It is use-
ful, however, to list the capabilities that such
tools should support when used for collabo-
rative modelling. First, there is a need for
both asynchronous and synchronous communi-
cation. Since collaborators on a model may be
in different time zones, there is a clear advan-
tage in being able to leave messages that oth-
ers will read later, but sometimes there is no
substitute for live interaction. Second, com-
munications should be archived. When new
people join the project, it is very helpful to be
able to understand the reasons for past deci-

sions by reference to the discussions that took
place at the time. Third, there should be sup-
port for structuring communication according
to discrete issues, to keep discussion of a partic-
ular point focused and accessible in one place.
Fourth, it should be possible to participate in
discussion and have access to an overview of
the project activity without being a member of
the core team and without having to follow all
the small details. This allows occasional contri-
butions from people who are interested in the
project but do not have time to be involved on
a regular basis.

It is clear that most of the technical require-
ments for collaborative modelling are easily sat-
isfied, but a small number of bottlenecks re-
main. Where a requirement for code sharing is
not specific to neuroscience – for version con-
trol, clear licensing and communication tools –
there are many available solutions, mostly due
to the rise of the open-source software move-
ment. Inasmuch as problems remain they are
due to a lack of knowledge by neuroscientists
of these tools and as such can be remedied by
education and training.

The requirements for simulator operability and
common modelling languages have come a long
way towards being fully satisfied in the last
few years, but there are still several points of
friction. Version 1 of the NeuroML specifi-
cation (Gleeson et al., 2010) makes it much
easier to share morphologically detailed, bio-
physical models of neurons and of small net-
works between users of different simulators, but
it lacks general support for phenomenological
models such as those of the integrate-and-fire
family, lacks the ability to explicitly specify
the mathematics of model components, and has
weak support for describing the connectivity of
large-scale networks. All of these shortcom-
ings are being addressed in the efforts to de-
velop NeuroML version 2, as well as in the
INCF-initiated NineML project. The PyNN
API makes it possible to develop simulator-
independent models for any simulator that has
a Python interface, which is currently most of
the widely-used simulators, and greatly sim-
plifies porting models from one simulator to
another by allowing incremental, rather than
all-at-once, conversion , but it does not cur-
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rently support morphologically detailed mod-
els, and it is of course restricted to a single
programming language. Projects underway to
support import/export of NeuroML-definitions
by/from PyNN and generation of Python code
from a NeuroML description could potentially
provide the best of both worlds, combining the
stability and language-independence of Neu-
roML descriptions with the flexibility of soft-
ware development in Python. Finally, run-time
interoperability using libraries such as MUSIC
has now been demonstrated, but has only re-
cently begun to be incorporated into existing
simulation tools and so has not yet been widely
used for real-world problems.

Social and scientific considera-
tions

Science has long had a tension between the
need for open communication of results and
methods between researchers so that science
can progress, and the wish of individual scien-
tists to gain and maintain an advantage in the
competition for resources and advancement in
the scientific career structure. An increase in
open, collaborative modelling would definitely
increase the ease and pace of communication
between researchers, and as such should be ex-
pected to have a beneficial effect on the rate of
advancement of science, but it is unclear what
the effect would be on the careers of individual
scientists.

A number of considerations arise for scientists
engaged in open, collaborative modelling.

Publication An open model would be ex-
pected to continuously evolve as it is incre-
mentally improved, with occasional major code
changes to reduce complexity, improve perfor-
mance or take advantage of some new tech-
nology. The original model developers may
drop out of active development as their career
progresses or research interests change, and
new collaborators may come along. A publi-
cation about, or using, the model captures a
snapshot of the model at one point in time.
The question of authorship then becomes par-
ticularly challenging. Who should be an au-

thor on the manuscript? Everyone who has
ever contributed to the model? Only those
who have contributed since the last publication
about/using the model? Those who have con-
tributed to the particular features that are in-
vestigated in the paper? If someone has made
a large contribution to the code but has had
minimal input into writing the paper, should
they be listed? In what order should contrib-
utors be listed? None of these questions are
unique to collaborative modelling projects, and
most journals have guidelines which can help to
resolve these issues, but the more informal the
collaboration, the more acute they will become.

Recognition and impact There is a wider
conversation going on about how to evaluate
scientific careers, and on using metrics for ac-
complishment other than the traditional jour-
nal impact factor (e.g., Neylon and Wu, 2009).
Open, collaborative modelling is clearly an area
where scientists can make a large contribution
and have considerable impact without publish-
ing, or in addition to publishing, traditional
scientific papers. The number of downloads
or checkouts of the code base, the number of
derivative projects, and the number of lines
of code written are all possible metrics that
could be used to evaluate scientists’ productiv-
ity. Each of these metrics has flaws; if sev-
eral metrics are combined, how should they
be weighted with respect to each other and
with respect to traditional measures of impact?
Adding a new feature to a model is more likely
to result in a publication than adding new tests
of the code, but it might well be the tests that
add the most value by increasing the confidence
we can have in the model results. How to mo-
tivate scientists to work on coding activities
that are less personally rewarding but of higher
value for the project and for science?

Bug fixes and retractions Almost all code,
with the exception of safety-critical software
for aircraft, nuclear reactors, etc., has bugs
and other errors. Scientific code, developed by
the most part by non-professional programmers
and with a small number of users, is likely to
have a higher rate of errors than the average.
It is therefore probable that a large proportion
of the code used to generate published arti-
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cles has bugs, most of which will have small
effects that do not affect the studies’ conclu-
sions, but some of which will completely in-
validate them (see for example Chang et al.,
2006; Brunini, 2006). At the present time,
since most scientific code is not shared, most
of these bugs are not found, but as code shar-
ing increases, and especially with code in open
repositories, more such bugs will be found. For
the major errors, formal retractions are a work-
able mechanism, although not without prob-
lems. For the more numerous small bugs, what
should happen when one is found? It may
be very straightforward to regenerate the fig-
ures or re-run the statistical tests with the
bug corrected, but where should the new fig-
ures, or the new version of the manuscript
be placed, and how can someone who discov-
ers the original version be notified that a cor-
rected version exists? Most journals do not
have any mechanism for this. Repositories such
as arXiv (http://arxiv.org/), which allow
posting of multiple versions of a manuscript,
demonstrate one way forward. Tools, such as
FigShare (http://figshare.com/), that allow
more fine-grained sharing of scientific results,
are another.

While finding bugs in scientific code creates
problems, it also of course allows them to be
fixed, increasing the quality of the science.
This is one of the major value propositions
of open, collaborative modelling (and of open-
source software generally), that by having more
people examining and using the code, more of
the bugs will be found. In the words of Ray-
mond (1999, p. 30), “given enough eyeballs, all
bugs are shallow”.

Competitive advantage If a scientist has
invested x years of effort in developing a model,
and then publishes a description of the model
but does not share the code, then it will take
another scientist y years of effort, where y
is probably less than x (since the description
is public) but is certainly not zero, to re-
implement the model and then test or extend
it. If the first scientist publishes their code at
the same time as the manuscript, the second
scientist will take a much smaller time z (the
time taken to download, install and understand
the code) to arrive at the point where the model

can be tested or extended. The difference be-
tween y and z, which will be at least a few
months and could easily be several years, is a
net loss to the progress of science , but could
be of considerable benefit to the first scientist,
since he or she can spend this time extending
the model him/herself, or in developing a new
model, which will lead to more publications and
will advance his or her career. The disincentive
to sharing models, especially for young scien-
tists who are not yet established, is very evi-
dent.

For open, collaborative modelling to become
more widely adopted, which is to the benefit
of science as a whole, then the disincentive de-
scribed above must be counterbalanced by an
equally large or larger incentive to share mod-
els. Here there is anecdotal evidence that shar-
ing scientific code increases the number of ci-
tations of an article, and generally boosts the
authors’ reputations. I am not aware of any
systematic studies of this issue, however, and
so the decision to share code remains a leap
of faith. This situation could be changed by
three things: first, if studies are conducted that
demonstrate a net benefit of sharing to scien-
tific reputations; second, if the weighting of
formal publications in evaluating impact is re-
duced relative to other scientific outputs; third,
if funding agencies or journals begin to require
sharing of the code related to a publication.

So far in this section I have not addressed the
distinction between sharing after publication
and placing code in an open, publicly accessi-
ble repository from the beginning of a research
project. Having code be completely open from
the beginning adds a risk of being “scooped”,
of someone else using your code for a publica-
tion before you’ve had time to publish yourself.
Set against that is the possibility of attracting
strong collaborators, and of the final publica-
tion being of higher quality (due to fewer bugs,
more discussion prior to publication) and being
more highly cited (as it relates to an already
open model that is more likely to be built-on
than grudgingly-shared one-off code).

Model diversity One possible scientific con-
cern with open, collaborative modelling is that
the reduction of diversity in the ecology of mod-
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els in a given area (as more scientists work on
the same model, rather than each group de-
veloping its own) will lead to fewer ideas be-
ing explored, as everyone concentrates on only
a few, well-accepted lines of research. I think
this concern is reasonable, and as a commu-
nity we should always be aware of the dangers
of such “group-think”, I think it is unlikely to
be a problem in practice for the type of com-
plex, data-driven model that will most benefit
from collaborative modelling. Here there are so
many details that there is plenty of space for
many scientists to push the model forward in
different directions at once, while at the same
time many of the details will not have a strong
bearing on any given scientific question under
study , and so there is a considerable advantage
in being able to use well-established, uncontro-
versial, common components for such parts of
a model: this improves model robustness and
makes model comparison easier.

Conclusion

If one accepts that large-scale, data-driven
modelling is an essential tool in achieving a
thorough understanding of brain function, then
it follows that models must increasingly be
developed by large groups, to cover the vari-
ous competencies in data management, simu-
lation technologies, high performance comput-
ing, and data analysis that are needed, and
to follow up the many pathways of investiga-
tion that such detailed models provide. Such
large groups may be assembled through cen-
tralised, formal projects or corporate struc-
tures, but may also be assembled in more in-
formal, distributed collaborations, or through
some combination of these approaches. This
way of working has some parallels with high-
energy particle physics, in which there are a
small number of central facilities (accelerators
in physics, computer clusters and supercom-
puter centres in large-scale modelling), each
of which hosts a small number of experiments
(centred around detectors in particle physics,
common models in neuroscience), each of which
is developed by distributed teams from many
universities. Each individual research group
then pursues their own research interests based

on shared data obtained from the common in-
frastructure they helped develop. This works
very well in high-energy physics. For it to work
in computational neuroscience requires the so-
lution of a number of technical challenges, but
this is well underway. More important are the
social challenges, for which solutions are fur-
ther away. To commit to open, collaborative
modelling, in which most of the scientists from
a sub-field of computational neuroscience work
on a small number of shared models, requires a
certain bravery, especially for young scientists,
but the potential rewards are enormous.
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